留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅源对MCM-22分子筛合成及物化性质的影响

杨卫亚 凌凤香 张喜文 王少军 杨春雁 沈智奇 郑庆华

杨卫亚, 凌凤香, 张喜文, 王少军, 杨春雁, 沈智奇, 郑庆华. 硅源对MCM-22分子筛合成及物化性质的影响[J]. 燃料化学学报(中英文), 2020, 48(7): 883-888.
引用本文: 杨卫亚, 凌凤香, 张喜文, 王少军, 杨春雁, 沈智奇, 郑庆华. 硅源对MCM-22分子筛合成及物化性质的影响[J]. 燃料化学学报(中英文), 2020, 48(7): 883-888.
YANG Wei-ya, LING Feng-xiang, ZHANG Xi-wen, WANG Shao-jun, YANG Chun-yan, SHEN Zhi-qi, ZHENG Qin-hua. Effect of silicon source on synthesis and physicochemical properties of MCM-22 zeolite[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 883-888.
Citation: YANG Wei-ya, LING Feng-xiang, ZHANG Xi-wen, WANG Shao-jun, YANG Chun-yan, SHEN Zhi-qi, ZHENG Qin-hua. Effect of silicon source on synthesis and physicochemical properties of MCM-22 zeolite[J]. Journal of Fuel Chemistry and Technology, 2020, 48(7): 883-888.

硅源对MCM-22分子筛合成及物化性质的影响

详细信息
  • 中图分类号: O641;O649

Effect of silicon source on synthesis and physicochemical properties of MCM-22 zeolite

More Information
  • 摘要: 在动态水热条件下,研究了硅溶胶、白炭黑、硅酸及硅胶为硅源时对MCM-22分子筛合成及物化性质的影响。以硅溶胶、白炭黑、硅酸三种硅源均可合成出高结晶度且无杂晶的片状MCM-22分子筛,其平均粒径分别为190、220和750 nm。硅源影响分子筛的聚集形态,三种硅源分别形成晶粒分散、晶粒半分散及晶粒聚集形态。三组样品的酸强度分布基本一致,都具有较多的中强酸分布,由硅溶胶和硅酸所得MCM-22分子筛在中强酸范围具有更高的B/L酸比值,以白炭黑合成的分子筛总酸量最高。NMR结果表明,样品中的铝以骨架铝为主,不存在明显的非骨架铝。由于硅胶对合成体系中游离水的吸附作用,水热反应难以发生,不能得到MCM-22分子筛,硅胶作为分子筛合成硅源时需要选择合适的反应条件。
  • 图  1  采用不同硅源合成样品的XRD谱图

    Figure  1  XRD patterns of the as-synthesized samples using different silicon sources

    图  2  采用不同硅源合成样品的SEM(左列)与TEM(右列)照片

    Figure  2  SEM (left column) and TEM (right column) images of the as-synthesized samples

    (a1) and (a2), (b1) and (b2), (c1) and (c2) by sillica sol, fumed sillica and silicic acid, respectively

    图  3  以硅溶胶,白炭黑,硅酸为硅源合成的MCM-22分子筛的N2吸附-脱附曲线

    Figure  3  N2 adsorption-desorption isotherms of the MCM-22 synthesized with silica sol, fumed silica and silicic acid, respectively

    图  4  以不同硅源合成的MCM-22分子筛的NMR 29Si(a)及27Al谱图(b)

    Figure  4  29Si MAS NMR(a) and 27Al MAS NMR(b) of the MCM-22 synthesized using different silicon sources

    表  1  不同硅源合成的MCM-22分子筛的比表面积和孔容

    Table  1  Surface area and pore volume of the MCM-22 synthesized using different silicon sources

    Silicon source Product Size d/nm Specific surface area S/(m2·g-1) Pore volume v/(mL·g-1)
    Stotal Sinner Souter vmicropore vtotal
    Sillica sol MCM-22 190 562 408 154 0.179 0.435
    Fumed sillica MCM-22 220 522 395 127 0.180 0.455
    Silicic acid MCM-22 750 486 377 109 0.174 0.478
    下载: 导出CSV

    表  2  不同硅源合成的MCM-22分子筛的SiO2/Al2O3比及样品收率

    Table  2  SiO2/Al2O3 ratios of the MCM-22 synthesized using different silicon sources

    Silicon source Feed Sillica sol Fumed sillica Silica gel
    SiO2/Al2O3 30 24.5 25.2 25.7
    Yield w/% 71.4 69.7 70.3
    下载: 导出CSV

    表  3  由不同硅源合成样品的酸强度分布

    Table  3  Acid strength distribution of the samples synthesized using different silicon sources

    Acid strength
    distribution
    MCM-22
    by silica sol
    MCM-22
    by fumed silica
    MCM-22
    by silicic acid
    content B/L content B/L content B/L
    Total acid(160℃)/(mmol·g-1) 0.95 2.92 1.10 1.99 0.91 3.27
    160-250℃(weak acid) 19.4% 1.14 18.3% 0.71 17.4% 2.18
    250-450℃(medium acid) 37.6% 6.25 36.1% 1.58 38.2% 5.33
    450℃(strong acid) 43.0% 2.96 45.6% 4.17 44.40% 2.71
    下载: 导出CSV
  • [1] 韩文雯, 王清涛, 张群峰, 吕井辉, 李小年. MCM-22分子筛催化烷基化反应的研究进展[J].现代化工, 2017, 37(10): 20-24. http://www.cnki.com.cn/Article/CJFDTotal-XDHG201710005.htm

    HAN Wen-wen, WANG Qin-tao, LV Jing-hui, LI Xiao-nian. Research progress of MCM-22 molecular sieve in alkylation[J]. Mod Chem Ind, 2017, 37(10): 20-24. http://www.cnki.com.cn/Article/CJFDTotal-XDHG201710005.htm
    [2] 李丹, 耿南坤, 詹珂, 闵慧, 周丹, 夏清华.分级结构MCM-22分子筛高效催化α-蒎烯异构化[J].湖北大学学报(自然科学版), 2017, 39(4):405-410. doi: 10.3969/j.issn.1000-2375.2017.04.013

    LI Dan, GENG Nan-kun, ZHAN Ke, MING Hui, ZHOU Dan, XIA Qing-hua. Hierarchical MCM-22 as an efficient catalyst for the isomerization of α-pinene[J]. J Hubei Univ (Nat Sci), 2017, 39(4):405-410. doi: 10.3969/j.issn.1000-2375.2017.04.013
    [3] YANG J, CHU J, WANG J, YIN D, LU J, ZHANG Y. Synthesis and catalytic performance of hierarchical MCM-22 zeolite aggregates with the assistance of carbon particles and fluoride ions[J]. Chin J Catal, 2014, 35(1):49-57. https://www.sciencedirect.com/science/article/pii/S1872206712607116
    [4] DOS SANTOS M B, ANDRADE H M C, MASCARENHAS A J S. Oxidative dehydration of glycerol over alternative H, Fe-MCM-22 catalysts:Sustainable production of acrylic acid[J]. Microporous Mesoporous Mater, 2019, 278:366-377. https://www.sciencedirect.com/science/article/abs/pii/S1387181119300162
    [5] WANG C, WANG Y, XIE Z. Understanding zeolites catalyzed methanol-to-olefins conversion from theoretical calculations[J]. Chin J Chem, 2018, 36(5):381-386. doi: 10.1002/cjoc.201800040
    [6] RUTKOWSKA M, DÍAZ U, PALOMARES A E, CHMIELARZ L. Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNOx process[J]. Appl Catal B:Environ, 2015, 168-169:531-539. doi: 10.1016/j.apcatb.2015.01.016
    [7] 王振东, 刘闯, 孙洪敏, 沈震浩, 杨为民.不同有机结构导向剂合成MCM-22分子筛及其催化性能[J].石油化工, 2020, 49(3):209-213. doi: 10.3969/j.issn.1000-8144.2020.03.001

    WANG Zhen-dong, LIU Chuang, SUN Hong-min, SHEN Zhen-hao, YANG Wei-min. MCM-22 zeolites synthesized with different organic structure-directing agents and catalytic performances[J]. Petrochem Technol, 2020, 49(3):209-213. doi: 10.3969/j.issn.1000-8144.2020.03.001
    [8] 王保玉.晶种对MCM-22分子筛合成的影响[J].洛阳师范学院学报, 2016, 35(11):29-31. http://www.cnki.com.cn/Article/CJFDTOTAL-LSZB201611010.htm

    WANG Bao-yu. The influences of various crystal seeds on the synthesis of MCM-22 molecular sieve[J]. J Luoyang Normal Univ, 2016, 35(11):29-31. http://www.cnki.com.cn/Article/CJFDTOTAL-LSZB201611010.htm
    [9] TEMPELMAN C H L, PORTILLA M T, MARTíNEZ-ARMERO M E, MEZARI B, DE CALUWÉ N G R, MARTÍNEZ C, HENSEN E J M. One-pot synthesis of nano-crystalline MCM-22[J]. Microporous Mesoporous Mater, 2016, 220:28-38. doi: 10.1016/j.micromeso.2015.08.018
    [10] 任花萍, 田少鹏, 马强, 丁思懿, 李小利, 高健.一种以凹凸棒土为原料合成MCM-22分子筛的方法: 中国, 106517235B[P]. 2019-02-19.

    REN Hua-ping, TIAN Shao-peng, MA Qiang, DING Si-yi, LI Xiao-li, GAO Jian. Synthesis of MCM-22 molecular sieve from Attapulgite: CN, 106517235B[P]. 2019-02-19.
    [11] OGURA M, INOUE K, YAMAGUCHI T. A mechanistic study on the synthesis of MCM-22 from SBA-15 by dry gel conversion to form a micro-and mesoporous composite[J]. Catal Today, 2011, 168(1):118-123. doi: 10.1016/j.cattod.2010.12.046
    [12] DOS SANTOS E R F, SOUSA A B, LEITE R C N, LABORDE H M, MENEZES R R, FREIRE RODRIGUES M G. Preparation of zeolite MCM-22 using the rice husk ash as silica source[J]. Mater Sci Forum, 2014, 805:646-650. doi: 10.4028/www.scientific.net/MSF.805.646
    [13] CHENG Y, LU M, LI J, SU X, PAN S, JIAO C, FENG M. Synthesis of MCM-22 zeolite using rice husk as a silica source under varying-temperature conditions[J]. J Colloid Interface Sci, 2012, 369(1):388-394. doi: 10.1016/j.jcis.2011.12.024
    [14] THAKKAR R, BANDYOPADHYAY R. Preparation, characterization, and post-synthetic modification of layered MCM-22 zeolite precursor[J]. J Chem Sci, 2017, 129(11):1671-1676. doi: 10.1007/s12039-017-1366-3
    [15] 朱夔, 李杨, 刘汉文, 贾继伟, 孙树明, 刘志刚.白炭黑在ZSM-5分子筛工业合成中的应用[J].工业催化, 2018, 26(5):151-154. doi: 10.3969/j.issn.1008-1143.2018.05.025

    ZHU Kui, LI Yang, LIU Han-wen, JIA Ji-wei, SUN Shu-ming, LIU Zhi-gang. Application of white carbon black in ZSM-5 molecular sieve industrial synthesis[J]. Ind Catal, 2018, 26(5):151-154. doi: 10.3969/j.issn.1008-1143.2018.05.025
    [16] 张佩珊, 马波, 杨卫亚, 凌凤香, 沈智奇, 王少军, 候宇鑫.核壳结构Beta/MCM-22双微孔复合分子筛的合成与表征[J].燃料化学学报, 2014, 42(10):1240-1245. doi: 10.3969/j.issn.0253-2409.2014.10.013

    ZHANG Pei-shan, MA Bo, YANG Wei-ya, LING Feng-xiang, SHEN Zhi-qi, WANG Shao-jun, HOU Yu-xin. Synthesis and characterization of core-shell Beta/MCM-22 micro-microporous composite zeolites[J]. J Fuel Chem Technol, 2014, 42(10):1240-1245. doi: 10.3969/j.issn.0253-2409.2014.10.013
    [17] 杨若晨, 马波, 凌凤香, 杨卫亚, 沈智奇, 王磊. MCM-22分子筛的高效合成与表征[J].石油化工, 2012, 41(1):19-21. http://d.wanfangdata.com.cn/periodical/syhg201201003

    YANG Ruo-chen, MA Bo, LING Feng-xiang, YANG Wei-ya, SHEN Zhi-qi, WANG Lei. Synthesis and characterization of zeolite MCM-22[J]. Petrochem Technol, 2012, 41(1):19-21. http://d.wanfangdata.com.cn/periodical/syhg201201003
    [18] CORMA A, DIAZ U, FORNÉS V, GUIL J M, MARTÍNEZ-TRIGUERO J, CREYGHTON E J. Characterization and catalytic activity of MCM-22 and MCM-56 compared with ITQ-2[J]. J Catal, 2000, 191(1):218-224. https://www.academia.edu/8476092/Characterization_and_Catalytic_Activity_of_MCM-22_and_MCM-56_Compared_with_ITQ-2
    [19] 喻志武, 王强, 陈雷, 邓风. H-MCM-22沸石分子筛中Brønsted/Lewis酸协同效应的1H和27Al双量子魔角旋转固体核磁共振研究[J].催化学报, 2012, 33(1):2140-2150. http://www.cqvip.com/QK/93027X/201201/40860857.html

    YU Zhi-wu, WANG Qiang, CHEN Lei, DENG Feng. Brønsted/Lewis acid sites synergy in H-MCM-22 zeolite studied by 1H and 27Al DQ-MAS NMR spectroscopy[J]. Chin J Catal, 2012, 33(1):2140-2150. http://www.cqvip.com/QK/93027X/201201/40860857.html
    [20] VAN MILTENBURG A, PAWLESA J, BOUZGA A M, ČCEJKA J, ST CKER M. 27Al and 29Si MAS-NMR study of the MCM-22 zeolite modified by steam and alkaline treatments[C]. Studies in Surface Science and Catalysis, 2008, 174: 937-940.
    [21] 陈雷, 邓风, 叶朝辉.铝在MCM-22分子筛骨架上分布的27Al MQ MAS NMR研究[J].物理化学学报, 2003, 19(9):805-809. doi: 10.3866/PKU.WHXB20030905

    CHEN Lei, DENG Feng, YE Zhao-hui. 27Al MultiPle Quantum MAS NMR study on the ditribution of aluminium in the zeolite MCM-22[J]. Acta Phys-Chim Sin, 2003, 19(9):805-809. doi: 10.3866/PKU.WHXB20030905
    [22] CUNDY C S, COX P A. The hydrothermal synthesis of zeolites:Precursors, intermediates and reaction mechanism[J]. Microporous Mesoporous Mater, 2005, 82(1):1-78. https://www.sciencedirect.com/science/article/abs/pii/S1387181105000934
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  46
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-29
  • 修回日期:  2020-07-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-07-10

目录

    /

    返回文章
    返回