留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同硅铝比ZSM-5的合成及其吸附脱除柴油中苯胺和吡啶的性能

洪新 李云赫 高畅 范博 庞宇莹 张丹 唐克

洪新, 李云赫, 高畅, 范博, 庞宇莹, 张丹, 唐克. 不同硅铝比ZSM-5的合成及其吸附脱除柴油中苯胺和吡啶的性能[J]. 燃料化学学报(中英文), 2018, 46(10): 1184-1192.
引用本文: 洪新, 李云赫, 高畅, 范博, 庞宇莹, 张丹, 唐克. 不同硅铝比ZSM-5的合成及其吸附脱除柴油中苯胺和吡啶的性能[J]. 燃料化学学报(中英文), 2018, 46(10): 1184-1192.
HONG Xin, LI Yun-he, GAO Chang, FAN Bo, PANG Yu-ying, ZHANG Dan, TANG Ke. Synthesis of ZSM-5 zeolites with different silica/alumina ratios and their performance in the removal of aniline and pyridine from model fuel through adsorption[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1184-1192.
Citation: HONG Xin, LI Yun-he, GAO Chang, FAN Bo, PANG Yu-ying, ZHANG Dan, TANG Ke. Synthesis of ZSM-5 zeolites with different silica/alumina ratios and their performance in the removal of aniline and pyridine from model fuel through adsorption[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1184-1192.

不同硅铝比ZSM-5的合成及其吸附脱除柴油中苯胺和吡啶的性能

基金项目: 

辽宁省自然科学基金 20180550639

详细信息
  • 中图分类号: O647

Synthesis of ZSM-5 zeolites with different silica/alumina ratios and their performance in the removal of aniline and pyridine from model fuel through adsorption

Funds: 

the Liaoning Provincial Natural Science Foundation of China 20180550639

More Information
  • 摘要: 合成了一系列不同硅铝比的ZSM-5分子筛,采用XRD、FT-IR、ICP、SEM、NH3-TPD和N2吸附-脱附等方法对其进行了表征,研究了不同硅铝比ZSM-5分子筛对模拟柴油中苯胺和吡啶的吸附脱除性能。结果表明,所合成的ZSM-5分子筛均具有典型MFI结构;与合成原料混合物中的硅铝比相比,实际硅铝比稍有降低。ZSM-5分子筛的酸量随硅铝比的增加而降低,硅铝比较小的ZSM-5(1)和ZSM-5(2)的吸附脱除苯胺或吡啶的效果明显优于其他样品,并且所有样品吸附脱除吡啶的效果均优于苯胺。ZSM-5(2)上苯胺和吡啶的吸附等温线符合Langmuir-Freundlich混合模型。
  • 图  1  ZSM-5样品的XRD谱图

    Figure  1  XRD patterns of various ZSM-5 samples

    图  3  ZSM-5分子筛的SEM照片(10000倍)

    Figure  3  SEM images of various ZSM-5 samples (10000 times)

    图  2  ZSM-5样品的红外光谱谱图

    Figure  2  FT-IR spectra of various ZSM-5 samples

    图  4  4 ZSM-5样品的N2吸附-脱附等温线和BJH孔径分布曲线

    Figure  4  N2 adsorption-desorption isotherms and BJH pore size distribution of various ZSM-5 samples

    图  5  ZSM-5样品的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of various ZSM-5 samples

    图  6  不同硅铝比的ZSM-5吸附脱除模拟柴油中苯胺或吡啶

    Figure  6  Adsorption performance for aniline or pyridine in model fuel over various ZSM-5 samples

    (adsorption conditions: 15 mL model fuel; 1.5 g adsorbent; 303 K; adsorption for 0.5 h)

    图  7  ZSM-5(2)对模拟柴油中苯胺的吸附等温线及其各等温吸附模型的拟合曲线

    Figure  7  Adsorption isotherms of aniline over ZSM-5(2) (a) and those fitted with Langmuir, Freundlich and Langmuir-Freundlich adsorption models at 303 K (b), 323 K (c) and 343 K (d)

    (adsorption conditions: 15 mL model fuel; 1.5 g adsorbent; 303, 323 or 343 K; 0.5 h)

    图  8  ZSM-5(2)对模拟柴油中吡啶的吸附等温线及其各等温吸附模型的拟合曲线

    Figure  8  Adsorption isotherms of pyridine over ZSM-5(2) (a) and those fitted with Langmuir, Freundlich and Langmuir-Freundlich adsorption models at 303 K (b), 323 K (c) and 343 K (d)

    (adsorption conditions: 15 mL model fuel; 1.5 g adsorbent; 303, 323 or 343 K; 0.5 h)

    图  9  ZSM-5(2)吸附脱除模拟柴油中苯胺或吡啶的再生性能

    Figure  9  The effects of regeneration method on the performance of regenerated ZSM-5 (2) in the removal of aniline or pyridine in model fuel by adsorption

    : fresh ZSM-5(2); : regeregeneration by calcination; : regeregeneration by alcohol washing

    表  1  ZSM-5样品的ICP测试结果

    Table  1  ICP results of the ZSM-5 samples

    Sample Content w/% Silica/alumina ratio in synthesis system Silica/alumina ratio in ZSM-5
    SiO2 Al2O3
    ZSM-5(1) 92.28 7.47 25 21
    ZSM-5(2) 96.26 3.88 50 42
    ZSM-5(3) 97.36 2.43 75 68
    ZSM-5(4) 98.75 0.98 200 172
    下载: 导出CSV

    表  2  ZSM-5样品的孔结构参数

    Table  2  Textural properties of the ZSM-5 samples

    Sample BET surface area A/(m2·g-1) Total pore volume v/(cm3·g-1) Average pore diameter d/nm
    ZSM-5(1) 463 0.224 1.965
    ZSM-5(2) 448 0.218 1.946
    ZSM-5(3) 377 0.276 2.929
    ZSM-5(4) 460 0.237 2.061
    下载: 导出CSV

    表  3  Langmuir,Freundlich和Langmuir-Freundlich等温吸附模型拟合的相关参数

    Table  3  Regression coefficients for the adsorption of aniline and pyridine on ZSM-5(2) with various adsorption models

    Adsorbate Temperature T/K Langmuir Freundlich Langmuir-Freundlich
    qm KL×105 R2 n KF R2 qm Ka×105 n R2
    Aniline 303 140.7 8.966 0.986 2.172 0.893 0.941 122.9 11.95 1.251 0.989
    323 189.6 5.647 0.973 1.830 0.425 0.975 212.9 1.734 0.744 0.976
    343 153.0 8.338 0.971 2.116 0.838 0.949 156.8 7.876 0.971 0.969
    Pyridine 303 276.2 4.614 0.991 1.443 0.142 0.976 184.8 9.589 1.345 0.995
    323 284.4 4.329 0.992 1.580 0.241 0.973 223.7 6.964 1.229 0.995
    343 338.9 3.661 0.994 1.498 0.186 0.977 246.0 6.753 1.292 0.998
    下载: 导出CSV
  • [1] LAREDO G C, LEYVA S, ALVAREZ R, TERESA MARES M, CASTILLO J, LUIS CANO J. Nitrogen compounds characterization in atmospheric gas oil and light cycle oil from a blend of Mexican crudes[J]. Fuel, 2002, 81(10):1341-1350. doi: 10.1016/S0016-2361(02)00047-9
    [2] CHENG X, ZHAO T, FU X, HU Z. Identification of nitrogen compounds in RFCC diesel oil by mass spectrometry[J]. Fuel Process Technol, 2004, 85(13):1463-1472. doi: 10.1016/j.fuproc.2003.10.004
    [3] GARCÍA-GUTIÉRREZ J L, LAREDO G C, FUENTES G A, GARCÍA-GUTIÉRREZ P, JIMÉNEZ-CRUZ F. Effect of nitrogen compounds in the hydrodesulfurization of straight-run gas oil using a CoMoP/g-Al2O3 catalyst[J]. Fuel, 2014, 138:98-103. doi: 10.1016/j.fuel.2014.08.008
    [4] POLO P. The suppression of a basic nitrogen compound influence on hydrodesulfurization activity of dibenzothiophene in treated diesel over Al2O3 supported CoMo catalysits by ZrO2 as a secondary support[J]. Catal Commun, 2015, 62(5):89-94. https://www.sciencedirect.com/science/article/pii/S1566736715000217
    [5] PRADO G H C, YUAN R, KLERK A D. Nitrogen removal from oil:A review[J]. Energy Fuels, 2017, 31:14-36. doi: 10.1021/acs.energyfuels.6b02779
    [6] 刘伟, 焦化柴油氧化脱氮工艺研究[D].北京: 中国石油大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10425-1011287221.htm

    LIU Wei. Process of oxidative denitrification of coking diesel[D]. Beijing: China University of Petroleum, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10425-1011287221.htm
    [7] 王云芳, 刘伟, 袁倩, 李青松.焦化柴油氧化萃取脱氮技术研究[J].应用化工, 2011, 40(8):1430-1436. doi: 10.3969/j.issn.1671-3206.2011.08.037

    WANG Yun-fang, LIU Wei, YUAN Qian, LI Qing-song. Technology of oxidative denitrification combined with extraction for coking diesel[J]. Appl Chem Ind, 2011, 40(8):1430-1436. doi: 10.3969/j.issn.1671-3206.2011.08.037
    [8] SCHMITT C C, CHIARO S S X, TAKESHITA E V, YAMAMOTO C I. Regeneration of activated carbon from babassu coconut refuse applied as a complementary treatment to conventional refinery hydrotreatment of diesel fuel[J]. J Clean Prod, 2016, 140:1465-1469. https://www.sciencedirect.com/science/article/pii/S0959652616315876
    [9] WEN J, LIN H, HAN X, ZHENG Y, CHU W. Physicochemical studies of adsorptive denitrogenation by oxidized activated carbons[J]. Ind Eng Chem Res, 2017, 56(17):5033-5041. doi: 10.1021/acs.iecr.6b05015
    [10] TAN P, XIE X Y, LIU X Q, PAN T, GU C, CHEN P F, ZHOU J Y, PAN Y C, SUN L B. Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation[J]. J Hazard Mater, 2017, 321:344-352. doi: 10.1016/j.jhazmat.2016.09.026
    [11] LAREDO G C, VEGA-MERINO P M, MONTOYA-DE FUENTE J A, MORA-VALLEJO R J, MENESES-RUIZ E, CASTILLO J J, ZAPATO-RENDÓN B. Comparison of the metal-organic framework MIL 101(Cr) versus four commercial adsorbents for nitrogen compounds removal in diesel feedstocks[J]. Fuel, 2016, 180:284-291. doi: 10.1016/j.fuel.2016.04.038
    [12] MAMBRINI R V, SALDANHA A L M, ARDISSON J D, ARAUJO M H, MOURA F C C. Adsorption of sulfur and nitrogen compounds on hydrophobic bentonite[J]. Appl Clay Sci, 2013, 84(10):286-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0231779223
    [13] BAIA L V, SOUZAA W C, DE SOUZA R J F, VELOSO C D O, CHIARO S S X, FIGUEIREDO C M A G. Removal of sulfur and nitrogen compounds from diesel oil by adsorption using clays as adsorbents[J]. Energy Fuels, 2017, 31(11):11731-11742. doi: 10.1021/acs.energyfuels.7b01928
    [14] MUSHRUSH G W, QUINTANA M A, BAUSERMAN J W, WILLAUER H D. Post-refining removal of organic nitrogen compounds from diesel fuels to improve environmental quality[J]. J Environ Sci Health A, 2011, 46(2):176-180. doi: 10.1080/10934529.2011.532433
    [15] 李红跃, 王雷, 张曼, 赵德智, 刘宝玉, 王立新.新型改性硅胶对碱氮的吸附行为[J].应用化工, 2016, 45(6):1027-1029. http://d.old.wanfangdata.com.cn/Periodical/sxhg201606007

    LI Hong-yue, WANG Lei, ZHANG Man, ZHAO De-zhi, LIU Bao-yu, WANG Li-xin. Adsorption behavior of new modified silica gel for nitrogen base[J]. Appl Chem Ind, 2016, 45(6):1027-1029. http://d.old.wanfangdata.com.cn/Periodical/sxhg201606007
    [16] 洪新, 李云赫, 袁加成, 赵永华, 唐克.变色硅胶吸附脱除模拟柴油中各种碱性氮化物[J].燃料化学学报, 2018, 46(3):298-304. doi: 10.3969/j.issn.0253-2409.2018.03.006

    HONG Xin, LI Yun-he, YUAN Jia-cheng, ZHAO Yong-hua, TANG Ke. Various basic nitrogen compounds removal from model diesel by adsorption with allochroic silica gel[J]. J Fuel Chem Technol, 2018, 46(3):298-304. doi: 10.3969/j.issn.0253-2409.2018.03.006
    [17] KIM J H, MA X, ZHOU A, SONG C. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents:a study on adsorptive selectivity and mechanism[J]. Catal Today, 2006, 111(1):74-83. doi: 10.1016-j.cattod.2005.10.017/
    [18] ALMARRI M, MA X, SONG C. Selective adsorption for removal of nitrogen compounds from liquid hydrocarbon streams over carbon and alumina-based adsorbents[J]. Ind Eng Chem Res, 2009, 48(48):951-960. http://cn.bing.com/academic/profile?id=606ebc523e45a87345cdd2fbd87eaf46&encoded=0&v=paper_preview&mkt=zh-cn
    [19] XIE L L, FAVRE-REGUILLON A, WANG X X, FU X, LEMAIRE M. Selective adsorption of neutral nitrogen compounds from fuel using ion-exchange resins[J]. J Chem Eng Data, 2010, 55(11):4849-4853. doi: 10.1021/je100446p
    [20] CHITANDA J M, MISRA P, ABEDI A, DALAI A K, ADJAYE J D. Synthesis and characterization of functionalized poly(glycidyl methacrylate)-based particles for the selective removal of nitrogen compounds from light gas oil:Effect of linker length[J]. Energy Fuels, 2015, 29(3):1881-1891. doi: 10.1021/ef502210z
    [21] MISRA P, CHITANDA J M, DALAI A J, ADJAYE J D. Selective removal of nitrogen compounds from gas oil using functionalized polymeric adsorbents:Efficient approach towards improving denitrogenation of petroleum feedstock[J]. Chem Eng J, 2016, 295:109-118. doi: 10.1016/j.cej.2016.03.024
    [22] 徐如人, 庞文琴, 霍启升.分子筛与多孔材料化学[M].第二版, 北京:科学出版社, 2015.

    XU Ru-ren, PANG Wen-qin, HUO Qi-sheng. Chemistry-Zeolites and Porous Materials[M]. Second edition. Beijing:Science Press, 2015.
    [23] 徐晓宇, 孙悦, 沈健, 翟玉龙. HY和USY分子筛对模拟油品中碱性氮化物的吸附行为[J].化工进展, 2014, 33(4):1035-1040. http://d.old.wanfangdata.com.cn/Periodical/hgjz201404042

    XU Xiao-yu, SUN Yue, SHEN Jian, ZHAI Yu-long. Adsorption behavior of basic nitrides in model oil on HY and USY molecular sieves[J]. Chem Ind Eng Prog, 2014, 33(4):1035-1040. http://d.old.wanfangdata.com.cn/Periodical/hgjz201404042
    [24] 洪新, 唐克. NaY分子筛的改性及吸附脱氮性能[J].燃料化学学报, 2015, 43(2):214-220. doi: 10.3969/j.issn.0253-2409.2015.02.012

    HONG Xin, TANG Ke. Modification and adsorptive denitrification of NaY molecular sieve[J]. J Fuel Chem Technol, 2015, 43(2):214-220. doi: 10.3969/j.issn.0253-2409.2015.02.012
    [25] SONG H, YOU J A, LI B, CHEN C, HUANG J, ZHANG J. Synthsis, characterization and adsorptive denitrogenation performance of bimodal mesoporous Ti-HMS/KIL-2 composite:A comparative study on synthetic methodology[J]. Chem Eng J, 2017, 327:406-417. doi: 10.1016/j.cej.2017.06.055
    [26] SHAHRIAR S A, LIN H, ZHENG Y. Adsorptive denitrogenation and desulfurization of diesel fractions by mesoporous SBA15-supported nickel(Ⅱ) phosphide synthesized through a novel approach of urea matrix combustion[J]. Ind Eng Chem Res, 2012, 51(44):14503-14510. doi: 10.1021/ie3015044
    [27] 洪新, 李云赫, 赵永华, 唐克.介孔材料Co-MCM-41的合成及其吸附脱除各种碱性氮化物[J].燃料化学学报, 2018, 46(2):243-250. doi: 10.3969/j.issn.0253-2409.2018.02.015

    HONG Xin, LI Yun-he, ZHAO Yong-hua, TANG Ke. Preparation of mesoporous Co-MCM-41 and its performance in adsorption removal of various basic nitrogen compounds[J]. J Fuel Chem Technol, 2018, 46(2):243-250. doi: 10.3969/j.issn.0253-2409.2018.02.015
    [28] TANG K, HONG X. Preparation and characterization of Co-MCM-41 and its adsorption removing basic nitrogen compounds from FCC diesel oil[J]. Energy Fuels, 2016, 30(6):4619-4624. doi: 10.1021/acs.energyfuels.6b00427
    [29] XUE T, WANG Y M, HE M Y. Synthsis of ultra-high-silica ZSM-5 zeolites with tunable crystal sizes[J]. Solid State Sci, 2012, 14(4):409-418. doi: 10.1016/j.solidstatesciences.2012.01.023
    [30] 李兆飞, 郭成玉, 王骞, 刘其武, 邢昕, 胡云峰.不同硅铝比ZSM-5分子筛的合成及其在丁烯催化裂解中的应用[J].石油化工, 2016, 45(2):163-168. doi: 10.3969/j.issn.1000-8144.2016.02.007

    LI Zhao-fei, GUO Cheng-yu, WANG Qian, LIU Qi-wu, XING Xin, HU Yun-feng. Synthesis of ZSM-5 zeolites with different silica-aluminaratio and their application in catalytic cracking of 1-butene[J]. Petrochem Technol, 2016, 45(2):163-168. doi: 10.3969/j.issn.1000-8144.2016.02.007
    [31] LI J, LIU S Y, ZHANG H, LÜ E J, REN P J, REN J. Synthesis and characterization of an unusual snowflake-shaped ZSM-5 zeolite with high catalytic performance in the methanol to olefin reaction[J]. Chin J Catal, 2016, 37(2):308-305. doi: 10.1016/S1872-2067(15)60979-2
    [32] ZHANG S G, HIGASHINMOTO S, YAMASHITA H, ANPO M. Characterization of vanadium oxide/ZSM-5 zeolite catalysts prepared by the solid-state reaction and their photocatalytic reactivity:In situ photoluminescence, XAFS, ESR, FT-IR, and UV vis investigations[J]. J Phys Chem B, 1998, 102(29):5590-5594. doi: 10.1021/jp981230r
    [33] WIESSCHE C I D, MARTENS R, ZADRAZIL F. XAFS, IR and UV-vis study of the Cu-I environment in Cu-I-ZSM-5[J]. J Phys Chem B, 2014, 101(3):870-894. https://www.researchgate.net/publication/231656696_XAFS_IR_and_UV-vis_study_of_the_Cu-I_environment_in_Cu-I-ZSM-5
    [34] 罗晓鸣, 王晓春, 张晓光, 许叔平, 陈旭.不同硅铝比ZSM-5分子筛性能的比较[J].石油学报(石油加工), 1986, 2(4):49-56. http://cdmd.cnki.com.cn/Article/CDMD-10270-1012454433.htm

    LUO Xiao-ming, WANG Xiao-chun, ZHANG Xiao-guang, XU Shu-ping, CHEN Xu. Comparison of the properties of ZSM-5 zeolites of different SiO/Al2O3 ratio[J]. Acta Pet Sin (Pet Process Sect), 1986, 2(4):49-56. http://cdmd.cnki.com.cn/Article/CDMD-10270-1012454433.htm
    [35] 姜玄珍, 郑雷.用原位红外光谱研究低硅铝比ZSM-5沸石中的新型B酸[J].分子催化, 1996, 10(3):183-186. http://www.cnki.com.cn/Article/CJFDTotal-FZCH603.004.htm

    JIANG Xuan-zhen, ZHENG Lei. Study on a novel typr of brönsted acid sites in ZSM-5 zeolite with low silicon-aluminum ratio by in-situ FT-IR technique[J]. J Mol Catal (China), 1996, 10(3):183-186. http://www.cnki.com.cn/Article/CJFDTotal-FZCH603.004.htm
    [36] 卢仁杰, 张新艳, 郝郑平.不同硅铝比Fe-ZSM-5催化剂对氧化亚氮催化分解性能的研究[J].环境科学, 2014, 35(1):371-379. http://d.old.wanfangdata.com.cn/Periodical/hjkx201401053

    LU Ren-jie, ZHANG Xin-yan, HAO Zheng-ping. Fe-ZSM-5 catalysts with different silica-alumina ratio for N2O catalytic decomposition[J]. Environ Sci, 2014, 35(1):371-379. http://d.old.wanfangdata.com.cn/Periodical/hjkx201401053
    [37] MOURA R A, SEOLATTO A A, DE OLIVEIRA M, FREITAS F F. The adsorption study of royal blue tiafix and black tiassolan dyes using bone char as adsorbent[J]. Adsorpt Sci Technol, 2018, (3/4):1178-1198. https://www.researchgate.net/publication/323227162_The_adsorption_study_of_Royal_Blue_Tiafix_and_Black_Tiassolan_dyes_using_bone_char_as_adsorbent
    [38] SOARES J C, SOARES A C, PEREIRA P A R, RODRIGUES V D C, SHIMIZU F M, MELENDEZ M E, NETO C S, CARVALHO A L, LEITE F L, MACHADO S A S, OLIVEIRA JR O N. Adsorption according to the Langmuir-Freundlich model is the detection mechanism of the antigen p53 for early diagnosis of cancer[J]. Phys Chem Cheml Phys, 2016, 18(12):8412-8418. doi: 10.1039/C5CP07121F
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  50
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-30
  • 修回日期:  2018-08-14
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-10-10

目录

    /

    返回文章
    返回