留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Removal of Hg0 from simulated coal-fired flue gas by using activated spent FCC catalysts

WANG Hua-sheng REN Yan-jun DENG Shuang HUANG Jia-yu GUO Feng-yan TIAN Gang

王华生, 任岩军, 邓双, 黄家玉, 郭凤艳, 田刚. 活化废FCC催化剂用于模拟烟气中汞的脱除[J]. 燃料化学学报(中英文), 2020, 48(12): 1466-1475.
引用本文: 王华生, 任岩军, 邓双, 黄家玉, 郭凤艳, 田刚. 活化废FCC催化剂用于模拟烟气中汞的脱除[J]. 燃料化学学报(中英文), 2020, 48(12): 1466-1475.
WANG Hua-sheng, REN Yan-jun, DENG Shuang, HUANG Jia-yu, GUO Feng-yan, TIAN Gang. Removal of Hg0 from simulated coal-fired flue gas by using activated spent FCC catalysts[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1466-1475.
Citation: WANG Hua-sheng, REN Yan-jun, DENG Shuang, HUANG Jia-yu, GUO Feng-yan, TIAN Gang. Removal of Hg0 from simulated coal-fired flue gas by using activated spent FCC catalysts[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1466-1475.

活化废FCC催化剂用于模拟烟气中汞的脱除

基金项目: 

the National Key Research and Development Program of China 2018YFB0605101

详细信息
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 中图分类号: X701

Removal of Hg0 from simulated coal-fired flue gas by using activated spent FCC catalysts

Funds: 

the National Key Research and Development Program of China 2018YFB0605101

More Information
  • 摘要: 采用有机溶剂内部瞬间沸腾法活化废流体催化裂化(SFCC)催化剂,通过固定床反应器考察了吸附温度、烟气成分及活化条件等多种变量对SFCC催化剂脱汞性能的影响。结果表明,SFCC催化剂经甲醇和乙醇活化后脱汞(Hg0)效果良好,焙烧温度也会影响催化剂活性。烟气中O2的存在有利于汞的脱除。含O2气氛下,NO在FCC-E催化剂表面形成含N活性位点,促进汞的脱除。SO2因浓度差异对Hg0的脱除表现出吸附催化和竞争吸附。在6% O2、12% CO2、0.06% NO烟气组分,120 ℃吸附温度,120 ℃活化温度,乙醇活化条件下,SFCC催化剂的脱汞效率接近100%。采用X射线荧光光谱(XRF)、扫描电镜(SEM)、X射线衍射(XRD)、热重(TG)和X射线光电子能谱(XPS)表征活化和未活化SFCC催化剂,探究与其脱汞性能关联。
    1)  本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  Schematic diagram of the fixed-bed adsorption evaluation device

    Figure  2  SEM images of the activated and non-activated SFCC catalysts: ((a), (b)) SFCC; ((c), (d)) FCC-360; and ((e), (f)) FCC-M

    Figure  3  TG/DTA curves of the SFCC catalyst in the air atmosphere (a) and N2 atmosphere (b)

    Figure  4  XPS spectra of the FCC-120 catalyst: (a) survey of elements; (b) Fe 2p; (c) Ce 3d; and (d) O 1s

    Figure  5  XRD patterns of various catalyst samples: a: SFCC; b: FCC-360; c: FCC-600; d: FCC-M; e: FCC-E; f: FCC-A; g: FCC-P

    Figure  6  Effect of the calcination temperature on the Hg0 removal efficiency of activated SFCC catalysts; the operation conditions of set I specified in Table 1 are used

    Figure  7  Effect of the activation organic solvent on the Hg0 removal efficiency of the activated SFCC catalysts; the operation conditions of Set II specified in Table 1 are used

    Figure  8  Effect of different adsorption temperature on the Hg0 removal efficiency of FCC-E; the operation conditions of Set III specified in Table 1 are used

    Figure  9  Effect of O2 concentration in the flue gas on the Hg0 removal efficiency of FCC-E; the operation conditions of Set IV specified in Table 1 are used

    Figure  10  Effect of SO2 concentration in the flue gas on the Hg0 removal efficiency of FCC-E; the operation conditions of Set V specified in Table 1 are used

    Figure  11  Effect of NO concentration in the flue gas on the Hg0 removal efficiency of FCC-E; the operation conditions of Set VI specified in Table 1 are used

    Figure  12  TPD profile of the SFCC-E adsorbent under N2 after mercury adsorption in the presence of NO and O2 at 120 ℃

    Table  1  Experimental conditions for the Hg0 adsorption tests

    Set Adsorbent Activation conditions Flue gas composition Adsorption temp t/℃
    calc. temp /℃ solvent
    I SFCC, activated SFCC 120-600 - 6% O2, 12% CO2, N2 120
    II activated SFCC 120 methanol, ethanol, acetone, petroleum ether 6% O2, 12% CO2, N2 120
    III activated SFCC 120 ethanol 6% O2, 12% CO2, N2 80-300
    IV activated SFCC 120 ethanol 0-10%O2, 12% CO2, N2 120
    V activated SFCC 120 ethanol 6% O2, 12% CO2, 0.06%-0.1% SO2, N2 120
    VI activated SFCC 120 ethanol 6% O2, 12% CO2, 0.01%-0.06% NO, N2 120
    下载: 导出CSV

    Table  2  Textural properties of the activated and non-activated SFCC catalysts

    Adsorbent Surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Pore diameter d/nm
    SFCC 74.9 0.09 3.181
    FCC-120 78.5 0.11 3.382
    FCC-360 90.4 0.11 3.795
    FCC-600 101.2 0.11 4.862
    FCC-M 87.3 0.10 3.804
    FCC-E 83.7 0.10 3.396
    FCC-A 77.9 0.09 3.400
    FCC-P 76.5 0.09 3.389
    下载: 导出CSV

    Table  3  Chemical composition of the SFCC catalysts determined by XRF

    Component Percentage Component Percentage Component Percentage
    Al2O3 46.397 Cs2O 1.115 V2O5 0.169
    SiO2 43.147 Na2O 0.782 CeO2 0.166
    CaO 2.012 P2O5 0.714 Sb2O3 0.121
    SO3 1.546 TiO2 0.302 ZnO 0.093
    NiO 1.416 MgO 0.254 La2O3 0.089
    Fe2O3 1.330 K2O 0.177 else 0.163
    下载: 导出CSV
  • [1] CHEN Y, GUO X, FAN W. Development and evaluation of magnetic iron-carbon sorbents for mercury removal in coal combustion flue gas[J]. J Energy Inst, 2020, 93(4): 1615-1623.
    [2] UNEP, UNEP publishes 2018 global mercury assessment[R]. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland, 2019.
    [3] XIE X, AI H S, DENG Z G. Impacts of the scattered coal consumption on PM2.5 pollution in China[J]. J Clean Prod, 2020, 245: 118922.
    [4] LIU T, XUE L C, GUO X. Study of Hg0 removal characteristics on Fe2O3 with H2S[J]. Fuel, 2015, 160: 189-195.
    [5] GB/13223—2011, Emission standard of air pollutants for thermal power plants[S].
    [6] WU S J, YAN P J, YU W S, CHENG K, WANG H, YANG W, ZHOU J, XI J H, QIU J H, ZHU S X, CHE L. Efficient removal of mercury from flue gases by regenerable cerium-doped functional activated carbon derived from resin made by in situ ion exchange method[J]. Fuel Process Technol, 2019, 196: 106167.
    [7] WU C L, CAO Y, DONG Z B, CHENG C M, LI H X, PAN W P. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler[J]. J Environ Sci, 2010, 22: 277-282,
    [8] LEE SS, LEE J Y, KEENER T C. Bench-scale studies of in-duct mercury capture using cupric chloride-impregnated carbons[J]. Environ Sci Technol, 2009, 43: 2957-2962.
    [9] MEI Z J, SHEN ZM, ZHAO Q J, WANG W H, ZHANG Y J. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon[J]. J Hazard Mater, 2008, 152: 721-729.
    [10] YANG J P. ZHAO Y C, ZHANG J Y, ZHENG C G. Removal of elemental mercury from flflue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. analyst characterization and performance evaluation[J]. Fuel, 2016, 164: 419-428.
    [11] WANG Y J, DUAN Y F. Effect of manganese ions on the structure of Ca(OH)2 and mercury adsorption performance of Mnx+/Ca(OH)2 composites[J]. Energy Fuels, 2011, 25: 1553-1558.
    [12] LIU H, YANG J P, TIAN C, ZHAO Y C, ZHANG JY.Mercury removal from coal combustion flue gas by modified palygorskite adsorbents[J]. Appl Clay Sci, 2017. 147: 36-43.
    [13] YANG J P, ZHU W B, QU W Q, YANG Z Q, ZHAO J X, WANG J, ZHANG M G, LI H L. Selenium functionalized metal-organic framework MIL-101 for efficient and permanent sequestration of mercury[J]. Environ Sci Technol, 2019, 53: 2206-2268.
    [14] YANG Z Q, LI H L, QU W Q, ZHANG M G, FENG Y, ZHAO J X, YANG J P, SHI K M. Role of sulfur trioxide (SO3) in gas-phase elemental mercury immobilization by mineral sulfide[J]. Environ Sci Technol, 2019, 53: 3250-3257.
    [15] LI H L, ZHU W B, YANG J P, ZHANG M G, ZHAO J X, QU W Q. Sulfur abundant S/FeS2 for efficient removal of mercury from coal-fired power plants[J]. Fuel, 2018, 232: 476-484.
    [16] LIU H, ZHAO Y, ZHOU Y M, ZHANG J Y. Removal of gaseous elemental mercury by modified diatomite[J]. Sci Total Environ, 2019, 652: 651-659.
    [17] JOHNSON E B G, ARSHAD S E B. Arshad. Hydrothermally synthesized zeolites based on kaolinite: A review[J]. Appl Clay Sci, 2014: 97-98, 215-221.
    [18] ADITYA B, ANJANI S. Catalyst demand growth projected at 1.1% through 2040[J]. Huston. Stradv, 2019: 1-2 (2020-02-10) https: //stratasadvisors.com/insights/2019/030119-catalyst-market-outlook.
    [19] VUYYURU K, PANT KK, KRISHNANV V, NIGAM K D P. Recovery of nickel from spent industrial catalysts using chelating agents[J]. Ind Eng Chem Res, 2010, 49: 2014-2024.
    [20] HUANG Y Y, CHEN X P, DENG Y F, ZHOU D, WANG L L. A novel nickel catalyst derived from layered double hydroxides(LDHs) supported on fluid catalytic cracking catalyst residue(FC3R) for rosin hydrogenation[J]. Chem Eng J, 2015, 269: 434-443.
    [21] FERELLA F, LENOE S, INNOCENZI V, MICHELIS I D, TAGLIERI G, GALLUCCI K. Synthesis of zeolites from spent fluid catalytic cracking catalyst[J]. JClean Prod, 2019, 230: 910-926.
    [22] YUANL, QIU Z F, YUAN L, TARIQ M, LU Y Q, YANG J, LI Z, LYU S G. Adsorption and mechanistic study for phosphate removal by magnetic Fe3O4-doped spent FCC catalysts adorbent[J]. Chemosphere, 2019, 219: 183-190.
    [23] LIU H, CHANG L, LIU W J, XIONG Z, ZHAO Y C, ZHANG J Y, ZHANG J Y. Advances in mercury removal from coal-fired flue gas by mineral adsorbents[J]. Chem Eng J, 2020, 379: 122263.
    [24] RODRIGUEZE D, BERNAL SA, PROVIS J, GEHMAN J, MONZO J, PAYA J, BORRACHERO M V. Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process[J]. Fuel, 2013, 109: 493-502.
    [25] DENG S, WANG H S, CHEN X P, WANG LL, LIANG J Z, ZHANG F. The preparation and application of a mercury adsorbent, CN, 201610524841.1[P]. 2016-07-05.
    [26] PAYA J, MONZO J, BORRACHERO M V, VELAZQUEZ S, BONILLA M. Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R-lime pastes[J]. Cement Concrete Res, 2003, 33: 1085-1091.
    [27] MA L J, HAN L N, CHEN S, HU J L, CHANG L Q, BAO W R, WANG J C. Rapid synthesis of magnetic zeolite materials from fly ash and iron-containing wastes using supercritical water for elemental mercury removal from flue gas[J]. Fuel Process Technol, 2019, 189: 39-48.
    [28] ZHANG Z, WU J, LI B, XU H B, LIU D J. Removal of elemental mercury from simulated flue gas by ZSM-5 modified with Mn-Fe mixed oxides[J]. Chem Eng J, 2019, 375: 121946.
    [29] LI H H, WANG Y, WANG S K, WANG X, HU JJ. Removal of elemental mercury in flue gas at lower temperatures over Mn-Ce based materials prepared by co-precipitation[J]. Fuel, 2017, 208: 576-586.
    [30] HE C, SHEN B X, LI FK. Effects of flue gas components on removal of elemental mercury over Ce-MnOx/Ti-PILCs[J]. J Hazard Mater, 2016, 304: 10-17.
    [31] LU G J, LU X Y, LIU P. Recovery of rare earth elements from spent fluid catalytic cracking catalyst using hydrogen peroxide as a reductant[J]. Miner Eng, 2020, 145: 106104.
    [32] SHI M T, LUO G Q, XU Y, ZOU R J, ZHU H L, HU J Y, LI X, YAO H. Using H2S plasma to modify activated carbon for elemental mercury removal[J]. Fuel, 2019, 254: 115549.
    [33] SUN R Z, ZHU H L, SHI M T, LUO G Q. Preparation of fly ash adsorbents utilizing non-thermal plasma to add S active sites for Hg0 removal from flue gas[J]. Fuel, 2020, 266: 116936.
    [34] DONG L, HUANG Y J, LIU L Q, LIU C Q, XU L G, ZHA J R, CHEN H, LIU H. Investigation of elemental mercury removal from coal-fired boiler flue gas over MIL101-Cr[J]. Energy Fuels, 2019, 33: 8864-8875.
    [35] SHEN F H, LIU J, WU D W, DONG Y C, LIU F, HUANG H. Design of O2/SO2 dual-doped porous carbon as superior sorbent for elemental mercury removal from flue gas[J]. J Hazard Mater, 2019, 366: 321-328.
    [36] TONG L, XU W Q, ZHOU X, LIU R H. Effects of multi-component flue gases on Hg0 removal over HNO3-modified activated carbon[J]. Energy Fuels, 2015, 29: 5231-5236.
    [37] LI H L, WU C Y, LI Y, LI L Q, ZHAO Y C, ZHANG J Y. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst[J]. ChemEng J, 2013, 219: 319-326.
    [38] ZHOU C S, SUN L S, ZHANG A C, MA C, WANG B, YU J, SU S, HU S, XIANG J. Elemental mercury (Hg0) removal from containing SO2/NO flue gas by magnetically separable Fe2.45Ti0. 55O4/H2O2, advanced oxidation processes[J]. Chem Eng J, 2015, 273: 381-389.
    [39] LIUR H, XU W Q, TONG L, ZHU T Y. Role of NO in Hg0 oxidation over a commercial selective catalytic reduction catalyst V2O5-WO3/TiO2[J]. J Environ Sci, 2015, 38: 126-132.
    [40] YANG Y J, MIAO S, LIU J, WANG Z, YU YN. Cost-effective manganese ore sorbent for elemental mercury removal from flue gas[J]. Environ Sci Technol, 2019, 53: 9957-9965.
    [41] LUO Z K, DUAN Y F, HUANG T F, LIU S, HUANG Y J, DONG L, REN S J, TAO J, GU X B. Emission and migration characteristics of mercury in a 0.3 MWth CFB Boiler with ammonium bromide-modified rice husk char injection into flue[J]. Energy Fuels, 2019, 33: 7578-7586.
    [42] RUMAYOR M, DIAZ-SOMOANO M, LOPEZ-ANTON M A, OCHOA-GONZALEZ R, MARTINEZ-TARAZONA M R. Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems[J]. Fuel, 2015, 148: 98-103.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  74
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 修回日期:  2020-10-20
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-12-10

目录

    /

    返回文章
    返回