留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

葡萄糖和Pd对钴基费托合成催化剂结构和性能的影响

代惠 胡石野 慕璐璐 王彪 宁文生

代惠, 胡石野, 慕璐璐, 王彪, 宁文生. 葡萄糖和Pd对钴基费托合成催化剂结构和性能的影响[J]. 燃料化学学报(中英文), 2020, 48(4): 490-494.
引用本文: 代惠, 胡石野, 慕璐璐, 王彪, 宁文生. 葡萄糖和Pd对钴基费托合成催化剂结构和性能的影响[J]. 燃料化学学报(中英文), 2020, 48(4): 490-494.
DAI Hui, HU Shi-ye, MU Lu-lu, WANG Biao, NING Wen-sheng. Effects of glucose and Pd on the structure and performance of cobalt-based catalyst for F-T synthesis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 490-494.
Citation: DAI Hui, HU Shi-ye, MU Lu-lu, WANG Biao, NING Wen-sheng. Effects of glucose and Pd on the structure and performance of cobalt-based catalyst for F-T synthesis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 490-494.

葡萄糖和Pd对钴基费托合成催化剂结构和性能的影响

基金项目: 

浙江省自然科学基金 LY14B030003

国家科技支撑计划 2014BAD02B05

详细信息
  • 中图分类号: TQ426.6;O643.36

Effects of glucose and Pd on the structure and performance of cobalt-based catalyst for F-T synthesis

Funds: 

the Zhejiang Provincial Natural Science Foundation of China LY14B030003

the National Ministry of Science and Technology of China 2014BAD02B05

More Information
  • 摘要: 采用等体积浸渍法制备SiO2负载的钴基催化剂,利用N2低温吸附、XRD、SEM和H2-TPR等方法表征了在浸渍操作中添加葡萄糖和助剂Pd对催化剂结构和性质的影响,并在固定床反应器中评价了催化剂的费托合成反应性能。葡萄糖和Pd能够改变Co3O4晶粒形状,添加葡萄糖提高了Co3O4的分散程度,助剂Pd促进了Co3O4还原。两者的联合使用则同时提高了钴物种分散度和还原度,从而改善了催化剂的费托合成反应活性和C5+烃选择性。
  • 图  1  氧化态催化剂的孔径分布

    Figure  1  Pore size distribution of the oxide catalysts

    图  2  氧化态催化剂的XRD谱图

    Figure  2  XRD patterns of the oxide catalysts

    图  3  葡萄糖和Pd对Co3O4不同晶向晶粒粒径的影响

    Figure  3  Size changes of Co3O4 crystal in the oxide catalysts along different face index

    图  4  反应后催化剂的XRD谱图

    Figure  4  XRD patterns of the spent catalysts

    图  5  氧化态催化剂的SEM照片

    Figure  5  SEM images of the oxide catalysts

    图  6  催化剂的H2-TPR谱图

    Figure  6  H2-TPR profiles of the catalysts

    表  1  氧化态催化剂的织构性质

    Table  1  Textural properties of the oxide catalysts

    Sample Surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Pore diameter d/nm
    SiO2 275.6 1.01 9.9
    A 209.0 0.73 10.1
    A-G 217.1 0.78 10.1
    A-P 218.6 0.78 10.1
    A-GP 226.9 0.82 10.2
    下载: 导出CSV

    表  2  催化剂的费托反应性能

    Table  2  Catalyst′s performance in F-T synthesis

    Catalyst CO conversion x/% Selectivity s/%
    CH4 CO2 C5+
    A 44.4 8.2 0.7 82.7
    A-G 48.1 8.0 1.0 82.9
    A-P 55.8 8.1 0.9 83.3
    A-GP 58.1 7.5 1.2 84.1
    reaction conditions: 230 ℃, 2.0 MPa, 3600 mL/(h·gcat), H2/CO(volume ratio)=2
    下载: 导出CSV
  • [1] DRY E M. The Fischer-Tropsch process:1950-2000[J]. Catal Today, 2002, 71:227-241. doi: 10.1016/S0920-5861(01)00453-9
    [2] KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean Fuels[J]. Chem Rev, 2007, 107(5):1692-1744. doi: 10.1021/cr050972v
    [3] JIAO F, LI J, PAN X, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, LI M, MIAO S, LI J, ZHU Y, XIAO D, HE T, YANG J, QI F, FU Q, BAO X. Selective conversion of syngas to light olefins[J]. Science, 2016, 351:1065-1068. doi: 10.1126/science.aaf1835
    [4] ZHONG L S, YU F, AN Y L, ZHAO Y H, SUN Y H, LI Z J, LIN T J, LIN Y J, QI X Z, DAI Y Y, GU L, HU J S, JIN S F, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538:84-86. doi: 10.1038/nature19786
    [5] CHENG K, KANG J C, KING D L, SUBRAMANIAN V, ZHOU C, ZHANG Q H, WANG Y. Advances in catalysis for syngas conversion to hydrocarbons[J]. Adv Catal, 2017, 60:125-208. https://www.sciencedirect.com/science/article/pii/S0360056417300032
    [6] 高海燕, 陈建刚, 相宏伟, 杨继礼, 李永旺, 孙予罕. Co/SiO2催化剂合成重质烃的反应性能[J].催化学报, 2001, 22(2):133-137. doi: 10.3321/j.issn:0253-9837.2001.02.009

    GAO Hai-yan, CHEN Jian-gang, XIANG Hong-wei, YANG Ji-li, LI Yong-wang, SUN Yu-han. Performance of Co/SiO2 catalyst for the synthesis of heavy hydrocarbons in F-T reaction[J]. Chin J Catal, 2001, 22(2):133-137. doi: 10.3321/j.issn:0253-9837.2001.02.009
    [7] WOO M H, CHO J M, JUN K W. Thermally stabilized cobalt-based Fischer-Tropsch catalysts by phosphorous modification of Al2O3:Effect of calcination temperatures on catalyst stability[J]. ChemCatChem, 2015, 7(9):1460-1469. doi: 10.1002/cctc.201402994
    [8] 邱成武, 吴宝山, 常强, 李永旺. Ru添加对Co/SiO2费托合成催化剂性能的影响[J].燃料化学学报, 2015, 43(10):1230-1238. doi: 10.3969/j.issn.0253-2409.2015.10.011

    QIU Cheng-wu, WU Bao-shang, CHANG Qiang, LI Yong-wang. Effect of Ru addition on the performance of Co/SiO2 Fischer-Tropsch synthesis catalyst[J]. J Fuel Chem Technol, 2015, 43(10):1230-1238. doi: 10.3969/j.issn.0253-2409.2015.10.011
    [9] DEN OTTER J H, NIJVELD S R, DE JONG K P. Synergistic promotion of Co/SiO2 Fischer-Tropsch catalysts by niobia and platinum[J]. ACS Catal, 2016, 6(3):1616-1623. doi: 10.1021/acscatal.5b02418
    [10] SONG H Q, ZHAO Q Z, ZHOU X, CAO Z Y, LUO M S. Selection of highly active and stable Co supported SiC catalyst for Fischer-Tropsch synthesis:Effect of the preparation method[J]. Fuel, 2018, 229:144-150. doi: 10.1016/j.fuel.2018.05.025
    [11] JACOBS G, PATTERSON P M, ZHANG Y Q, DAS T, LI J L, DAVIS B H. Fischer-Tropsch synthesis:Deactivation of noble metal-promoted Co/Al2O3 catalysts[J]. Appl Catal A:Gen, 2002, 233(1):215-226. https://www.researchgate.net/publication/232404200_Fischer-Tropsch_synthesis_on_sulphur_poisoned_CoAl2O3_catalyst
    [12] SOLED S L, IGLESIA E, FIATO R A, BAUMGARTNER J E, VROMAN H, MISEO S. Control of metal dispersion and structure by changes in the solid-state chemistry of supported cobalt Fischer-Tropsch catalysts[J]. Top Catal, 2003, 26:101-109. doi: 10.1023/B:TOCA.0000012990.83630.f9
    [13] ZHANG Y, HANAYAMA K, TSUBAKI N. The surface modification effects of silica support by organic solvents for Fischer-Tropsch synthesis catalysts[J]. Catal Commun, 2006, 7:251-254. doi: 10.1016/j.catcom.2005.11.008
    [14] 陈红贤, 宁文生, 陈春华, 张甜. Fe2O3晶型对Fe基催化剂的CO2加氢性能影响[J].燃料化学学报, 2015, 43(11):1387-1392. doi: 10.3969/j.issn.0253-2409.2015.11.015

    CHEN Hong-xian, NING Wen-sheng, CHEN Chun-hua, ZHANG Tian. Influence of Fe2O3 crystal phase on the performance of Fe-based catalysts for CO2 hydrogenation[J]. J Fuel Chem Technol, 2015, 43(11):1387-1392. doi: 10.3969/j.issn.0253-2409.2015.11.015
    [15] NING W, SHEN H, JIN Y, YANG X. Effects of weak surface modification on Co/SiO2 catalyst for Fischer-Tropsch reaction[J]. PLoS One, 2015, 10(5):e0124228. doi: 10.1371/journal.pone.0124228
    [16] GARCÍA-TRENCO A, MARTÍNEZ A. A simple and efficient approach to confine Cu/ZnO methanol synthesis catalysts in the ordered mesoporous SBA-15 silica[J]. Catal Today, 2013, 215:152-161. doi: 10.1016/j.cattod.2013.03.005
    [17] 张睿, 潘喜强, 潘蕊娟, 王红梅, 谢小莉, 段超, 齐小峰. Co/Al2O3催化剂制备及其合成重质烃的反应性能[J].工业催化, 2018, 26(9):48-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gych201809008

    ZHANG Rui, PAN Xi-qiang, PAN Rui-juan, WANG Hong-mei, XIE Xiao-li, DUAN Chao, QI Xiao-feng. Preparation and synthesis of heavy hydrocarbon by Co/Al2O3 catalyst[J]. Ind Catal, 2018, 26(9):48-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gych201809008
    [18] JIANG Z S, ZHAO Y H, HUANG C F, SONG Y H, LI D P, LIU Z T, LIU Z W. Metal-support interactions regulated via carbon coating-A case study of Co/SiO2, for Fischer-Tropsch synthesis[J]. Fuel, 2018, 226:213-220. doi: 10.1016/j.fuel.2018.03.195
    [19] 王凯, 代惠, 李贝, 王彪, 宁文生. hcp-Co基费托合成催化剂的研究进展[J].石油化工, 2019, 48(9):968-975. http://d.old.wanfangdata.com.cn/Periodical/syhg201909015

    WANG Kai, DAI Hui, LI Bei, WANG Biao, NING Wen-sheng. Advances in the research of hcp-co based synthesis catalysts[J]. Petrochem Technol, 2019, 48(9):968-975. http://d.old.wanfangdata.com.cn/Periodical/syhg201909015
    [20] KHODAKOV A Y, GRIBOVAL-CONSTANT A, BECHARA R, ZHOLOBENKO L V. Pore size effects in Fischer-Tropsch synthesis over cobalt-supported mesoporous silicas[J]. J Catal, 2002, 206:230-241. doi: 10.1006/jcat.2001.3496
    [21] TSUBAKI N, SUN S, FUJIMOTO K. Different functions of the noble metals added to cobalt catalysts for Fischer-Tropsch synthesis[J]. J Catal, 2001, 199(2):236-246. doi: 10.1006/jcat.2001.3163
    [22] QIU X Q, TSUBAKI N, SUN S, FUJIMOTO K. Influence of noble metals on the performance of Co/SiO2, catalyst for 1-hexene hydroformylation[J]. Fuel, 2002, 81:1625-1630. doi: 10.1016/S0016-2361(02)00088-1
    [23] SUN S, FUJIMOTO K, YONEYAMA Y, TSUBAKI N. Fischer-Tropsch synthesis using Co/SiO2 catalysts prepared from mixed precursors and addition effect of noble metals[J]. Fuel, 2002, 81:1583-1591. doi: 10.1016/S0016-2361(02)00090-X
    [24] 李晨, 马向东, 应卫勇, 房鼎业. Co-Ru/γ-Al2O3催化剂的F-T合成性能[J].石油化工, 2008, 37(1):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhg200801007

    LI Cheng, MA Xiang-dong, YING Wei-yong, FANG Ding-ye. F-T synthesis of Co-Ru/Al2O3 catalyst[J]. Petrochem Technol, 2008, 37(1):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhg200801007
    [25] JIN Y, XIAO G Q, HAN Y Y, SUN F L, ZHANG D H, ZHANG Y H, LI J L, HONG J P. Products selectivity and reaction stability of cobalt-based Fischer-Tropsch catalysts affected by glow discharge plasma treatment and silica structure[J]. Catal Today, 2019, 337:139-146. doi: 10.1016/j.cattod.2019.04.023
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  44
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-09
  • 修回日期:  2020-03-08
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-04-10

目录

    /

    返回文章
    返回