留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Fe负载的HZSM-5催化热解制备生物油实验研究

李缔 李攀 王贤华 邵敬爱 杨海平 陈汉平

李缔, 李攀, 王贤华, 邵敬爱, 杨海平, 陈汉平. 基于Fe负载的HZSM-5催化热解制备生物油实验研究[J]. 燃料化学学报(中英文), 2016, 44(5): 540-547.
引用本文: 李缔, 李攀, 王贤华, 邵敬爱, 杨海平, 陈汉平. 基于Fe负载的HZSM-5催化热解制备生物油实验研究[J]. 燃料化学学报(中英文), 2016, 44(5): 540-547.
LI Di, LI Pan, WANG Xian-hua, SHAO Jing-ai, YANG Hai-ping, CHEN Han-ping. Experimental study on bio-oil from catalytic pyrolysis on Fe modified HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 540-547.
Citation: LI Di, LI Pan, WANG Xian-hua, SHAO Jing-ai, YANG Hai-ping, CHEN Han-ping. Experimental study on bio-oil from catalytic pyrolysis on Fe modified HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 540-547.

基于Fe负载的HZSM-5催化热解制备生物油实验研究

基金项目: 

国家自然科学基金 51376075

国家重点基础研究发展规划 973 program

国家重点基础研究发展规划 973 program, 2013CB228102

公益性行业(农业) 科研专项 201303095

详细信息
    通讯作者:

    王贤华, E-mail: wangxianhua@hust.edu.cn

  • 中图分类号: TK16

Experimental study on bio-oil from catalytic pyrolysis on Fe modified HZSM-5

Funds: 

the National Natural Science Foundation of China 51376075

the Major State Basic Research Development Program of China 973 program

the Major State Basic Research Development Program of China 973 program, 2013CB228102

Special Fund for Agro-Scientific Research in the Public Interest 201303095

  • 摘要: 通过离子交换法制备含2%Fe (质量分数) 的HZSM-5催化剂, 采用X射线衍射仪(XRD)、激光粒度分析仪以及比表面积及孔径分析仪对催化剂进行表征, 并在550 ℃下进行木屑的催化热解实验。对无催化剂和不同比例催化剂条件下得到的生物油进行GC-MS分析, 结果表明, 在Fe负载的HZSM-5作用下, 生物油产率明显升高(最大增幅7%), 轻质组分产率明显升高, 重质组分产率略微升高。同时, 轻质组分中的酮类、呋喃等含氧化合物含量降低, 酚类、酸含量升高; 重质组分中的酮类、呋喃类等含氧化合物含量明显降低, 酚类、萘类含量明显增多。Fe负载的HZSM-5催化剂对木屑的热解反应有较好的催化效果, 加强了对热解初始蒸汽的择形修饰, 从而抑制了生物质三组分木质素初始热解产物中的醌类等容易一次或二次结焦物质的生成, 孔道结构对蒸汽的二次反应被抑制, 产物向较小分子的轻质产物上富集。
  • 图  1  生物质催化热解实验装置示意图

    Figure  1  Biomass catalytic pyrolysis system

    1: gas tank; 2: flow meter; 3: oven; 4: quartz reactor; 5: temperature controller; 6: reaction zone; 7: condensate bottle; 8: ice water condenser; 9: filter; 10: desiccator; 11: gas bag

    图  2  催化剂的粒径分布

    Figure  2  Particle size distribution of catalysts

    图  3  离子交换前后催化剂的XRD谱图

    Figure  3  XRD patterns of HZSM-5 before and after ion-exchanged

    图  4  不同量Fe/HZSM-5对液体产物分布的影响

    Figure  4  Effect of different Fe/HZSM-5 ratio on liquid product distribution

    图  5  Fe/HZSM-5对上层轻质组分产物成分的影响

    Figure  5  Effect of Fe/HZSM-5 on the main component of the upper light oil

    图  6  Fe/HZSM-5对下层重质组分产物成分的影响

    Figure  6  Effect of Fe/HZSM-5 on the main component of the lower heavy oil

    : ketones; : furans; : phenols; : naphthalenes

    表  1  木屑的工业分析与元素分析

    Table  1  Proximate and ultimate analyses of sawdust

    Proximate analysis wad/% Ultimate analysis wad/%
    M V A FC C H N S O*
    4.44 85.47 1.25 8.84 52.49 5.70 0.96 0.57 34.59
    =*: by difference
    下载: 导出CSV

    表  2  催化剂的孔隙结构参数

    Table  2  Pore structure parameters of catalysts

    Type BET surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Pore size d/nm
    HZSM-5 336.21 0.192 3 2.52
    Fe/HZSM-5 315.68 0.1852 2.50
    下载: 导出CSV

    表  3  Fe负载上层轻质组分GC-MS产物分布

    Table  3  Composition of the upper light oil through Fe/HZSM-5 catalyst by GC-MS analysis

    Name Non-catalyst
    peak area /%
    (0.3g Fe/HZSM-5)
    peak area /%
    (0.6g Fe/HZSM-5)
    peak area /%
    (0.9g Fe/HZSM-5)
    peak area /%
    Acetic acid 32.3 39.9 41.98 45.84
    2-propanone, 1-hydroxy- 12.48 13.38 13.7 16.28
    Propanoic acid 3.76 3.7 3.84 2.67
    2-propen-1-ol 1.23
    1-propanol 3.15
    1, 2-ethanediol, diacetate 2.19
    Furfural 5.38 5.34
    3-furanol, tetrahydro- 1.41
    2-methoxytetrahydrofuran 1.23
    Furan, tetrahydro-2, 5-dimethoxy- 0.45
    1-hydroxy-2-butanone 3.42 3.86 3.22
    Cyclopentanone 5.53 4.71
    2-cyclopenten-1-one 5.93 4.86
    2-cyclopenten-1-one, 2-methyl- 2.08 1.02 0.94 0.9
    Butanoic acid 1.92 1.44
    Butyrolactone 1.74 1.69 1.44 0.91
    2, 3-butanedione 1.78
    2-cyclopenten-1-one, 2-hydroxy-3-methyl- 2.67
    1, 2-cyclopentanedione, 3-methyl- 1.88 1.75 0.91
    2-cyclopenten-1-one, 2, 3-dimethyl- 1.11
    Piperidine, 1-methyl- 0.84
    Phenol 1.03 0.8 0.85
    Phenol, 2-methyl- 1.6 1.11 0.94 1.53
    Phenol, 2-methoxy- 1.71 1.17
    Phenol, 4-methyl- 1.53 0.69
    Phenol, 2, 4-dimethyl- 0.58
    Phenol, 2-methoxy-4-methyl- 2.23
    1, 6;2, 3-dianhydro-4-O-acetyl-. 2.18 1.62
    beta.-d-gulopyranose
    1, 2-benzenediol 5.58 6.79 8.53 9.62
    1, 2-benzenediol, 3-methyl- 1.28
    1, 2-benzenediol, 4-methyl- 1.63
    下载: 导出CSV

    表  4  Fe负载下层重质组分GC-MS产物的分布

    Table  4  Composition of the lower heavy oil through Fe/HZSM-5 catalyst by GC-MS analysis

    Name Non-catalyst
    peak area /%
    (0.3 g Fe/HZSM-5)
    peak area /%
    (0.6 g Fe/HZSM-5)
    peak area /%
    (0.9 g Fe/HZSM-5)
    peak area /%
    Acetic acid 18.38 8.52 9.08 13.73
    2-propanone, 1-hydroxy- 3.31 0.98 1.08 2.02
    Propanoic acid 3.3 0.67
    2-pentanone, 4-hydroxy-4-methyl- 1.17
    Formic acid phenyl ester 1.77
    3-hexyne, 2-methyl- 0.78
    2, 4-hexadiene, 2, 3-dimethyl- 0.58
    Furfural 5.31 4.28 3.25
    1-hydroxy-2-butanone 0.54
    Cyclopentanone 2.68 1.31 0.75
    2-cyclopenten-1-one 1.9 3.63 1.69
    2-cyclopenten-1-one, 2-methyl- 1.35 1.04 0.94
    2-cyclopenten-1-one, 3-methyl- 1.93 0.9 1.58
    Butyrolactone 0.98 0.83
    1, 3-butadiene, 2, 3-dimethyl- 0.41
    1, 2-cyclopentanedione, 3-methyl- 0.66 0.81
    2-cyclopenten-1-one, 2, 3-dimethyl- 2.58 2.33 0.74
    2-cyclopenten-1-one, 3-ethyl-2-hydroxy- 0.14
    Toluene 0.5 0.52 0.73
    p-xylene 0.63 1.04 0.88
    Phenol 1.6 3.07 1.67
    Phenol, 2-methyl- 3.68 3.42 3.21 4.26
    Phenol, 2-methoxy- 4.98 3.1 7.46
    Phenol, 4-methyl- 3.74 4.03
    Phenol, 2, 3-dimethyl- 1.38 2.47 0.72 1.33
    Phenol, 2, 4-dimethyl- 5.87 5.12 4 5.29
    Phenol, 2, 5-dimethyl- 2.06 4.15
    Phenol, 2, 4, 6-trimethyl- 1.17 6.04 1.98
    Phenol, 2-ethyl- 2.46 1.77 1.98
    Benzene, 1-ethyl-4-methoxy- 3.11 0.7 2.72 4.22
    2-hydroxy-3-methylbenzaldehyde 0.79 1.27
    Benzaldehyde, 4-(1-methylethyl)- 1.01
    1, 2-benzenediol 2.88
    1, 2-benzenediol, 3-methyl- 1.1 2.92
    1, 3-benzenediol, 4, 5-dimethyl- 0.6 2.27
    1, 3-benzenediol, 4-ethyl- 4.78
    Phenol, 4-ethyl-2-methoxy- 1.76 3.57 5.39
    Phenol, 2-ethyl-6-methyl- 3.48 1.28 1.52
    Phenol, 2-methoxy-3-methyl- 1.53
    Phenol, 2-methoxy-4-methyl- 1.48 1.3 3.04
    Phenol, 2, 3, 5, 6-tetramethyl- 1.01
    Thymol 0.79 0.75
    Benzene, 1-methoxy-4-(1-methylethyl)- 0.38
    Benzene, 1, 3, 5-triethyl- 0.99
    Phenol, 4-(1-methylpropyl)- 1.39
    Indene 3.87
    Indane 0.21 0.31
    1H-indene, 1, 3-dimethyl- 0.14 0.25
    1H-indene, 1, 1-dimethyl- 0.13
    1H-inden-5-ol, 2, 3-dihydro- 0.2 0.97
    5-hydroxy-3-methyl-1-indanone 0.8
    2-allylphenol 2.7 2.27 1.1 0.86
    2-allyl-4-methylphenol 5.76 4.11 2.97 2.95
    3-allyl-6-methoxyphenol 3.2 4.43
    Naphthalene 1.47 2.36 3.16
    1-naphthalenol, 2-methyl- 0.43 1.6 1.98
    Naphthalene, 2-methyl- 1.6 1.74 4.6
    Naphthalene, 2, 6-dimethyl- 0.69 1.47
    Naphthalene, 2, 3, 6-trimethyl- 1.1
    Naphthalene, 2, 6-bis (1, 1-dimethylethyl)- 1.08
    2-methoxy-4-vinylphenol 4.96 3.39
    Phenol, 2-methoxy-4-propyl- 2.26
    1, 2-benzenediol, 4-methyl- 7.27 5.71
    Butylated hydroxytoluene 2.28
    Phenol, 2-methoxy-4-(1-propenyl)- 3.78 9.04
    Phenol, 2-methoxy-3-(2-propenyl)- 1.85 2
    2-methyl-6-propylphenol 2.63 3.18 0.76 2.02
    Acetophenone, 4'-methoxy- 2 1.63 0.72 1.98
    Bicyclo[4.2.0]octa-1, 3, 5-triene 1.45
    下载: 导出CSV
  • [1] KLASS D L. Biomass for renewable energy, fuels and chemicals[J]. Bio Renew Energy Fuels Chem, 1998, 29(12): 1028-1037.
    [2] 马广鹏, 张颖.中国生物质能源发展现状及问题探讨[J].农业科技管理, 2013, 32(1): 20-22. http://www.cnki.com.cn/Article/CJFDTOTAL-NKGL201301006.htm

    MA Guang-peng, ZHANG Ying. Discussions on current situation and problems of biomass energy development in China[J]. Manage Agri Sci Technol, 2013, 32(1): 20-2. http://www.cnki.com.cn/Article/CJFDTOTAL-NKGL201301006.htm
    [3] 田原宇, 乔英云.基于生物固碳的低碳发展模式探讨[J].绿色科技, 2013, (7): 156-158. http://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ201307077.htm

    TIAN Yuan-yu, QIAO Ying-yun. Discussion of low charbon development model based on biological sequestration[J]. J Green Sci Technol, 2013, (7): 156-158. http://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ201307077.htm
    [4] LU Q, ZHANG Z B, ZHANG C J, SU S H, LI W Y, DONG C Q. Overview of chemical characterization of biomass fast pyrolysis oils[J]. Appl Mech Mater, 2012, 130-134: 422-425. https://www.researchgate.net/publication/253115353_Overview_of_Chemical_Characterization_of_Biomass_Fast_Pyrolysis_Oils
    [5] ZHANG M J, LI W Z, ZU S, HUO W, ZHU X F, WANG Z Y. Catalytic hydrogenation for bio-oil upgrading by a supported nimob amorphous alloy[J]. Chem Eng Technol, 2013, 36(36): 2108-2116. doi: 10.1002/ceat.201300142/full
    [6] ZHANG X L, YANG W H, DONG C Q. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor[J]. Bioresour Technol, 2009, 100(3): 1428-1434. doi: 10.1016/j.biortech.2008.08.031
    [7] ILIOPOULOU E F, STEFANIDIS S D, KALOGIANNIS K G, DELIMITIS A, LAPPAS A A, TRIANTAFYLLIDIS K S. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite[J]. Appl Catal B: Environ, 2012, 127(17): 281-290. http://www.sciencedirect.com/science/article/pii/S0926337312003888
    [8] FRENCH R, CZERNIK S. Catalytic pyrolysis of biomass for biofuels production[J]. Fuel Process Technol, 2010, 91(1): 25-32. doi: 10.1016/j.fuproc.2009.08.011
    [9] 俞宁, 蔡忆昔, 李小华, 樊永胜, 尹云海, 张蓉仙. HZSM-5分子筛催化热裂解油菜秸秆制取精制生物油[J].农业工程学报, 2014, 30(15): 264-271. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201415034.htm

    YU Ning, CAI Yi-xi, LI Xiao-hua, FAN Yong-sheng, YIN Yun-hai, ZHANG Rong-xian. Catalytic pyrolysis of rape straw for upgraded bio-oil production using HZSM-5 zeolite[J]. Trans CSAE, 2014, 30(15): 264-271. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201415034.htm
    [10] 辛星, 田文栋, 肖云汉.气氛对快速催化热解生物质的影响[J].环境工程, 2012, (S2): 473-476. http://www.cnki.com.cn/Article/CJFDTOTAL-HJGC2012S2131.htm

    XIN Xing, TIAN Wen-dong, XIAO Yun-han. Influence of different atmospheres on catalystical pyrolysis of biomass[J]. Environ Eng, 2012, (S2): 473-476. http://www.cnki.com.cn/Article/CJFDTOTAL-HJGC2012S2131.htm
    [11] TRANE R, DAHL S, SKJΦTH-RASMUSSEN M S, JENSEN A D. Catalytic steam reforming of bio-oil[J]. Int J Hydro Energy, 2012, 37(8): 6447-6472. doi: 10.1016/j.ijhydene.2012.01.023
    [12] MARTINEZ C, CORMA A. Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes[J]. Coordin Chem Rev, 2011, 255(13): 1558-1580. http://www.sciencedirect.com/science/article/pii/S0010854511001214
    [13] AL-SABAWI M, CHEN J, NG S. Fluid catalytic cracking of biomass-derived oils and their blends with petroleum feedstocks: A review[J]. Energy Fuels, 2012, 26(9): 5355-5372. doi: 10.1021/ef3006417
    [14] 朱锡锋, 陆强, 郑冀鲁, 郭庆祥, 朱清时.生物质热解与生物油的特性研究[J].太阳能学报, 2007, 27(12): 1285-1289. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200612017.htm

    ZHU Xi-Feng, LU Qiang, ZHENG Ji-lu, GUO Qing-xiang, ZHU Qing-shi. Research on biomass pyrolysis and bio-oil characteristics[J]. Acta Energ Sol Sin, 2007, 27(12): 1285-1289. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200612017.htm
    [15] 王丽红, 柏雪源, 易维明, 孔凡霞, 李永军, 何芳, 李志合.玉米秸秆热解生物油特性的研究[J].农业工程学报, 2006, 22(3): 108-111. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200603023.htm

    WANG Li-hong, BAI Xue-yuan, YI Wei-ming, KONG Fan-xia, LI Yong-jun, HE Fang, LI Zhi-he. Characteristics of bio-oil from plasma heated fluidized bed pyrolysis of corn stalk[J]. Trans CSAE, 2006, 22(3): 108-111. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200603023.htm
    [16] HOSOYA T, KAWAMOTO H, SAKA S. Role of methoxyl group in char formation from lignin-related compounds[J]. J Anal Appl Pyrolysis, 2009, 84(1): 79-83. doi: 10.1016/j.jaap.2008.10.024
    [17] ASMADI M, KAWAMOTO H, SAKA S. Pyrolysis and secondary reaction mechanisms of softwood and hardwood lignins at the molecular level[J]. Green Energy Technol, 2010, 66: 129-135. http://www.doc88.com/p-3387766235530.html
    [18] ZHANG H, RUI X, JIN B, SHEN D, RAN C, XIAO G. Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: Effect of different catalysts[J]. Bioresour Technol, 2013, 137(6): 82-87. https://www.researchgate.net/publication/236184448_Catalytic_fast_pyrolysis_of_straw_biomass_in_an_internally_interconnected_fluidized_bed_to_produce_aromatics_and_olefins_Effect_of_different_catalysts
    [19] GAYUBO A G, AGUAYO A T, ATUTXA A, AGUADO R, MARTIN O A, BILBAO J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite.Ⅱ. Aldehydes, ketones, and acids[J]. Ind Eng Chem Res, 2004, 43(11): 2619-2626. doi: 10.1021/ie030792g
    [20] DICKERSON T, SORIA J. Catalytic fast pyrolysis: A review[J]. Energies, 2013, 6(1): 514-38. doi: 10.3390/en6010514
    [21] SAMOLADA M, PAPAFOTICA A, VASALOS I. Catalyst evaluation for catalytic biomass pyrolysis[J]. Energy Fuels, 2000, 14(6): 1161-1167. doi: 10.1021/ef000026b
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  33
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-10
  • 修回日期:  2016-01-29
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-05-10

目录

    /

    返回文章
    返回