留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶种法合成UZM-9分子筛及其CO2/CH4/N2吸附分离性能

韦小丽 孙天军 柯权力 刘小伟 王树东

韦小丽, 孙天军, 柯权力, 刘小伟, 王树东. 晶种法合成UZM-9分子筛及其CO2/CH4/N2吸附分离性能[J]. 燃料化学学报(中英文), 2017, 45(7): 863-870.
引用本文: 韦小丽, 孙天军, 柯权力, 刘小伟, 王树东. 晶种法合成UZM-9分子筛及其CO2/CH4/N2吸附分离性能[J]. 燃料化学学报(中英文), 2017, 45(7): 863-870.
WEI Xiao-li, SUN Tian-jun, KE Quan-li, LIU Xiao-wei, WANG Shu-dong. Adsorptive separation properties of CO2/CH4/N2 on UZM-9 synthesized by seed-assisted method[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 863-870.
Citation: WEI Xiao-li, SUN Tian-jun, KE Quan-li, LIU Xiao-wei, WANG Shu-dong. Adsorptive separation properties of CO2/CH4/N2 on UZM-9 synthesized by seed-assisted method[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 863-870.

晶种法合成UZM-9分子筛及其CO2/CH4/N2吸附分离性能

基金项目: 

国家自然科学基金 21476231

详细信息
    通讯作者:

    王树东, Tel: 0411-8379052, E-mail: wangsd@dicp.ac.cn, suntianjun@dicp.ac.cn

  • 中图分类号: TE624.9

Adsorptive separation properties of CO2/CH4/N2 on UZM-9 synthesized by seed-assisted method

Funds: 

the National Natural Science Foundation of China 21476231

  • 摘要: 以TEAOH和TMAOH为有机模板剂,酸处理的UZM-9分子筛为晶种,采用水热法在48 h内合成出分子筛UZM-9,并对其CO2/CH4/N2的吸附分离性能进行了研究。采用XRD、ICP、TG、SEM与气体吸附等手段对晶种法合成的UZM-9分子筛结构、耐水稳定性与吸附性能进行了研究。结果表明,晶种法可以在2 d内合成出硅铝原子比在3以上、收率达到65%的UZM-9分子筛;所得分子筛的CO2吸附容量可以达到5 mmol/g以上,吸附热为34 kJ/mol,CO2/CH4、CO2/N2与CH4/N2的平均分离因子分别为100、240与2.4,CO2分离性能优良且具有一定耐水性能。
  • 图  1  UZM-9分子筛以及酸处理晶种的XRD谱图

    Figure  1  XRD patterns of the as-prepared zeolite, acid treated seed and zeolite prepared by seed assisted method

    a: 0.3-seed; b: 14d-UZM-9; c: 0.3-UZM-9

    图  2  UZM-9分子筛的SEM照片

    Figure  2  Typical SEM images of the synthesized zeolites

    (a): 14d-UZM-9; (b): 0.3-UZM-9

    图  3  UZM-9分子筛的热重曲线

    Figure  3  TG curves of UZM-9 zeolites

    a: 0.3-seed; b: 14d-UZM-9; c: 0.3-UZM-9

    图  4  0.3-UZM-9分子筛水处理前后的XRD谱图

    Figure  4  XRD patterns of zeolite 0.3-UZM-9

    a: before water treatment; b: after water treatment

    图  5  水吸附循环处理前后0.3-UZM-9分子筛的Ar吸附等温线

    Figure  5  Ar adsorption-desorption isotherms of 0.3-UZM-9 zeolite before and after water treatment

    图  6  分子筛0.3-UZM-9水处理前后的孔径分布

    Figure  6  Pore size distribution of 0.3-UZM-9 before and after water treatment

    图  7  0.3-UZM-9分子筛水处理前后的CO2、CH4与N2在不同温度下的吸附等温线

    Figure  7  Adsorption isotherms for CO2, CH4 and N2 on 0.3-UZM-9 zeolite at 288, 298 and 308 K: before (square) and after (circle) water treatment

    表  1  分子筛的结构表征及收率

    Table  1  Characteristic results and yields of zeolites

    表  2  水处理前后分子筛0.3-UZM-9孔结构的变化

    Table  2  The textural properties of 0.3-UZM-9 before and after water treatment

    表  3  水处理前后分子筛0.3-UZM-9的分离性能

    Table  3  Separation performances of 0.3-UZM-9 zeolite before and after water treatment

  • [1] TAGLIABUE M, FARRUSSENG D, VALENCIA S, AGUADO S, RAVON U, RIZZO C, CORMA A, MIRODATOS C. Natural gas treating by selective adsorption:Material science and chemical engineering interplay[J]. Chem Eng J, 2009, 155(3):553-566. doi: 10.1016/j.cej.2009.09.010
    [2] BAO Z B, YU L, REN Q, LU X Y, DENG S G. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework[J]. J Colloid Interface Sci, 2011, 353(2):549-556. doi: 10.1016/j.jcis.2010.09.065
    [3] RUFFORD T E, SMART S, WATSON G C Y, GRAHAM B F, BOXALL J, DINIZ DA COSTA J C, MAY E F. The removal of CO2 and N2 from natural gas:A review of conventional and emerging process technologies[J]. J Pet Sci Eng, 2012, 94:123-154. http://www.sciencedirect.com/science/article/pii/S0920410512001581
    [4] 陈兆元.气体深冷分离工[M].北京:化学工业出版社, 2005.

    CHEN Zhao-yuan, Gas Deep Cooling Method[M]. Beijing:Chemical Industry Press, 2005.
    [5] 王学松.气体膜技术[M].北京:化学工业出版社, 2010.

    WANG Xue-song. Membrane Technology[M]. Beijng:Chemical Industry Press, 2010.
    [6] 樊栓狮, 程宏远, 陈光进.水合物法分离技术研究[J].现代化工, 1999, 19(2):11-12. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG902.003.htm

    FAN Shuan-shi, CHENG Hong-yuan, CHEN Guang-jin. Separation technique based on gas hydrate formation[J]. Mod Chem Ind, 1999, 19(2):11-12. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG902.003.htm
    [7] 吕碧洪, 金佳佳, 张莉, 李伟.有机胺溶液吸收CO2的研究现状及进展[J].石油化工, 2011, 40(8):803-809. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=syhg201108000&dbname=CJFD&dbcode=CJFQ

    LV Bi-hong, JIN Jia-jia, ZHANG Li, LI Wei. A systematic review of CO2 adsorption using amine[J]. Petrochem Technol, 2011, 40(8):803-809. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=syhg201108000&dbname=CJFD&dbcode=CJFQ
    [8] 王洪梅, 罗仕忠, 吴永永, 孙思, 李通.改性硅胶吸附剂用于CO2/CH4吸附分离的研究[J].天然气化工:C1化学与化工, 2012, 37(5):1-5. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trqh201205000&dbname=CJFD&dbcode=CJFQ

    WANG Hong-mei, LUO Shi-zhong, WU Yong-yong, SUN Si, LI Tong. Study on modified silica gels and their adsorption properties for CO2/CH4 mixed gas separation[J]. Nat Gas Chem Ind:C1, 2012, 37(5):1-5. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trqh201205000&dbname=CJFD&dbcode=CJFQ
    [9] ROCHA L A M, ANDREASSEN K A, GRANDE C A. Separation of CO2/CH4 using carbon molecular sieve (CMS) at low and high pressure[J]. Chem Eng Sci, 2017, 164:148-157. doi: 10.1016/j.ces.2017.01.071
    [10] 张薄, 辜敏, 鲜学福.碳分子筛的结构和表面性质对其吸附分离CH4/N2和CO2/N2的影响]J].功能材料, 2012, 43(20):2858-2862. doi: 10.3969/j.issn.1001-9731.2012.20.029

    ZHANG Bo, GU Min, XIAN Xue-fu. Effects structure and surface property on adsorptive separation of carbon molecular sieve for CH4/N2 and CO2/N2[J]. J Funct Mater, 2012, 43(20):2858-2862. doi: 10.3969/j.issn.1001-9731.2012.20.029
    [11] HIMENO S, KOMATSU T, FUJITA S. High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons[J]. J Chem Eng Data, 2005, 50(2):369-376. doi: 10.1021/je049786x
    [12] PENG X, WANG W, XUE R, SHEN Z. Adsorption separation of CH4/CO2 on mesocarbon microbeads:experiment and modeling[J]. AIChE J, 2006, 52(3):994-1003. doi: 10.1002/(ISSN)1547-5905
    [13] BAI B C, CHO S, YU H R, YI K B, KIM K D, LEE Y S. Effects of aminated carbon molecular sieves on breakthrough curve behavior in CO2/CH4separation[J]. J Ind Eng Chem, 2013, 19(3):776-783. doi: 10.1016/j.jiec.2012.10.016
    [14] HAO S, ZHANG J, ZHONG Y, ZHU W. Selective adsorption of CO2 on amino-functionalized silica spheres with centrosymmetric radial mesopores and high amino loading[J]. Adsorpt, 2012, 18(5/6):423-430. doi: 10.1007/s10450-012-9428-9
    [15] SONGOLZADEH M, SOLEIMANIOl M, TAKHT R M, SONGOLZADEH R. Carbon dioxide separation from flue gases:a technological review emphasizing reduction in greenhouse gas emissions[J]. Sci World J, 2014:828131. http://pubmedcentralcanada.ca/pmcc/articles/PMC3947793/
    [16] SUN T, REN X, HU J, WANG S. Expanding pore size of Al-BDC Metal-Organic Frameworks as a way to achieve high adsorption selectivity for CO2/CH4 sseparation[J]. J Phys Chem C, 2014, 118(29):15630-15639. doi: 10.1021/jp411536d
    [17] VENNA S R, CARREON M A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation[J]. J Am Chem Soc, 2009, 132(1):76-78. http://www.ncbi.nlm.nih.gov/pubmed/20014839
    [18] PALOMINO M, CORMA A, REY F, VALENCIA S. New insights on CO2-methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs[J]. Langmuir, 2009, 26(3):1910-1917. http://www.ncbi.nlm.nih.gov/pubmed/19757816
    [19] LIU B, SMIT B. Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs[J]. J Phys Chem C, 2010, 114(18):8515-8522. doi: 10.1021/jp101531m
    [20] JAIME G M, GREGORY J L, JANA L G, MARK A M, LISA M R. Crystalline aluminosilicate zeolitic composition:UZM-9:US, 6713041 B1[P]. 2004-3-30.
    [21] PARK M B, LEE Y, ZHENG A, XIAO F S, NICHOLAS C P, LEWIS G J, HONG S B. Formation pathway for lta zeolite crystals synthesized via a charge density mismatch approach[J]. J Am Chem Soc, 2012, 135(6):2248-2255. doi: 10.1021/ja309831e
    [22] KIM S H, PARK M B, MIN H K, HONG S B. Zeolite synthesis in the tetraethylammonium-tetramethylammonium mixed-organic additive system[J]. Microporous Mesoporous Mater, 2009, 123(1):160-168. http://www.sciencedirect.com/science/article/pii/S1387181109001772
    [23] TOTH J. Thermodynamical model and prediction of gas/solid adsorption isotherms[J]. J Colloid Interface Sci, 2004, 275(1):2-8. doi: 10.1016/j.jcis.2004.02.073
    [24] PETER S A, SEBASTIAN J, JASRA R V. Adsorption of nitrogen, oxygen, and argon in mono-, di-, and trivalent cation-exchanged zeolite mordenite[J]. Ind Eng Chem Res, 2005, 44(17):6856-6864. doi: 10.1021/ie050128v
    [25] PHAM T D, LIU Q, LOBO R F. Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites[J]. Langmuir, 2012, 29(2):832-839. http://www.ncbi.nlm.nih.gov/pubmed/23249267
    [26] DO D D. Adsorption Analysis:Equilibria and Kinetics[M]. London:Imperial CollegePress, 1998.
    [27] International Zeolite Association, Structure Commission. http://www.iza-structure.org.
    [28] ZUKAL A, AREAN C O, DELGADO M R, NACHTIGALL P, PULIDO A, MAYEROVÁ J, Ĉejka J. Combined volumetric, infrared spectroscopic and theoretical investigation of CO2 adsorption on Na-A zeolite[J]. Microporous Mesoporous Mater, 2011, 146(1):97-105. http://www.sciencedirect.com/science/article/pii/S1387181111001417
    [29] DUNNE J A, RAO M, SIRCAR S, GORTE R J, MYERS A L. Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites[J]. Langmuir, 1996, 12(24):5896-5904. doi: 10.1021/la960496r
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  47
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-30
  • 修回日期:  2017-05-05
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-07-10

目录

    /

    返回文章
    返回