留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural evolution of a bituminous coal char related to its synchronized gasification behavior with H2O and/or CO2

WANG Huan KONG Jiao WANG Mei-jun CHANG Li-ping

王欢, 孔娇, 王美君, 常丽萍. 烟煤焦在H2O和CO2气氛下的结构演变与气化反应性关联[J]. 燃料化学学报(中英文), 2019, 47(4): 393-401.
引用本文: 王欢, 孔娇, 王美君, 常丽萍. 烟煤焦在H2O和CO2气氛下的结构演变与气化反应性关联[J]. 燃料化学学报(中英文), 2019, 47(4): 393-401.
WANG Huan, KONG Jiao, WANG Mei-jun, CHANG Li-ping. Structural evolution of a bituminous coal char related to its synchronized gasification behavior with H2O and/or CO2[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 393-401.
Citation: WANG Huan, KONG Jiao, WANG Mei-jun, CHANG Li-ping. Structural evolution of a bituminous coal char related to its synchronized gasification behavior with H2O and/or CO2[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 393-401.

烟煤焦在H2O和CO2气氛下的结构演变与气化反应性关联

基金项目: 

the National Natural Science Foundation of China 21406152

the National Natural Science Foundation of China U1510111

Shanxi Coal Based Key Scientific and Technological Project MJH2015-04

详细信息
  • 中图分类号: TQ530.2

Structural evolution of a bituminous coal char related to its synchronized gasification behavior with H2O and/or CO2

Funds: 

the National Natural Science Foundation of China 21406152

the National Natural Science Foundation of China U1510111

Shanxi Coal Based Key Scientific and Technological Project MJH2015-04

More Information
  • 摘要: 本研究以烟煤在1000 ℃热解所制得的焦样为研究对象,考察了其在H2O、CO2及两者混合气氛下的结构演变,以及气化反应性的影响。为了探究焦样在气化过程中的结构演变,利用氮吸附、SEM和拉曼光谱等表征手段分析不同碳转化率下的焦样结构。结果表明,H2O气氛对焦样结构的演变明显不同于CO2气氛,揭示了焦样在两种气氛下的反应路径不同。因结构演变的不同,随碳转化率的增加,焦样在两种气氛下表现出不同的气化反应性能。在CO2气氛下,焦样的气化反应速率随碳转化率的增加而逐渐降低,与H2O气氛存在下变化趋势相反。在H2O和CO2共气化条件下,煤焦在H2O和CO2混合气氛下的反应速率高于单气氛下的反应速率的计算值,表现出一定的协同作用。这是因为焦样与H2O反应能够产生较大的比表面积,为焦样与CO2反应提供更多的反应场所,促进了焦样与CO2的反应。
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  Curve-fitting diagram of Raman peak of char

    Figure  2  Changes of physical structure with carbon conversion of char in various atmospheres

    (a): specific surface area; (b): average pore diameter ■ : H2O; ● : CO2; ▲ : H2O+CO2

    Figure  3  SEM images of raw char and chars at 50% carbon conversion obtained in various atmospheres

    (a): 50.0 k×; (b): 100.0 k×

    Figure  4  Changes of chemical structures with carbon conversion of char in various atmospheres

    (a): total Raman area; (b): I(Gr+Vl+Vr)/ID ratio ■ : H2O; ● : CO2; ▲ : H2O+CO2

    Figure  5  Changes of specific reaction rate with carbon conversion of char in various atmospheres

    Figure  6  XRD patterns of ash from char gasification in various atmospheres

    Figure  7  Changes of intrinsic reaction rate with carbon conversion of char in various atmospheres

    Figure  8  Experimental and calculated curves of gases released from char gasification in mixed atmosphere

    Figure  9  Experimental and calculated values of gas release quantity at various carbon conversion ranges of char in mixed atmosphere

    (a): H2; (b): CO

    Table  1  Proximate and ultimate analyses of coal and char samples

    Sample Proximate analysis w/% Ultimate analysis wdaf/%
    Mad Ad Vdaf C H O* N S
    BC 0.65 33.39 26.97 79.25 4.68 10.57 1.87 3.63
    BC-C 0.24 45.93 3.56 93.02 0.54 1.78 1.82 2.84
    note: ad: air dry base; d: dry basis; daf: dry and ash-free basis; *: by difference
    下载: 导出CSV

    Table  2  Analyses of ash composition in coal sample used in experiment

    Composition w/%
    SiO2 Al2O3 Fe2O3 CaO MgO TiO2 SO3 K2O Na2O P2O5
    46.48 42.51 2.09 1.2 0.25 2.27 0.3 0.58 1.92 0.06
    下载: 导出CSV
  • [1] KEOWN D M, HAYASHI J I, LI C Z. Drastic changes in biomass char structure and reactivity upon contact with steam[J]. Fuel, 2008, 87(7):1127-1132. doi: 10.1016/j.fuel.2007.05.057
    [2] LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007, 86(12/13):1664-1683. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9dd8e1cc925b5df85cc11ee7b35bf753
    [3] ZHANG L, LI T T, QUYN D, DONG L, QIU P H, LI C Z. Structural transformation of nascent char during the fast pyrolysis of mallee wood and low-rank coals[J]. Fuel Process Technol, 2015, 138:390-396. doi: 10.1016/j.fuproc.2015.05.003
    [4] LU L M, KONG C H, SAHAJWALLA V, HARRIS D. Char structural ordering during pyrolysis and combustion and its influence on char reactivity[J]. Fuel, 2002, 81(9):1215-1225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69be92cdfbcf2ccee51d7b872bb44843
    [5] MARQUES M, SUAREZ-RUIZ I, FLORES D, GUEDES A, RODRIGUES S. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite[J]. Int J Coal Geol, 2009, 77(3/4):377-382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=73a7f99a9cc46ec2c9fd1cd352f80106
    [6] FENG B, BHATIA S K. Variation of the pore structure of coal chars during gasification[J]. Carbon, 2003, 41(3):507-523. doi: 10.1016/S0008-6223(02)00357-3
    [7] WU H W, YIP K V, TIAN F J, XIE Z L, LI C Z. Evolution of char structure during the steam gasification of biochars produced from the pyrolysis of various mallee biomass components[J]. Ind Eng Chem Res, 2009, 48(23):10431-10438. doi: 10.1021/ie901025d
    [8] IRFAN M F, USMAN M R, KUSAKABE K. Coal gasification in CO2 atmosphere and its kinetics since 1948:A brief review[J]. Energy, 2011, 36(1):12-40. doi: 10.1016/j.energy.2010.10.034
    [9] MITSUOKA K, HAYASHI S, AMANO H, KAYAHARA K, SASAOAKA E, UDDIN M A. Gasification of woody biomass char with CO2:The catalytic effects of K and Ca species on char gasification reactivity[J]. Fuel Process Technol, 2011, 92(1):26-31. http://cn.bing.com/academic/profile?id=c0a3fc1118348aff88404b2c5c654bad&encoded=0&v=paper_preview&mkt=zh-cn
    [10] FUSHIMI C, WADA T, TSUTSUMI A. Inhibition of steam gasification of biomass char by hydrogen and tar[J]. Biomass Bioenergy, 2011, 35(1):179-185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f7a07c76e631fd3f1b1687231cdc5347
    [11] BAI Y H, WANG Y L, ZHU S H, YAN L J, LI F, XIE K C. Synergistic effect between CO2 and H2O on reactivity during coal chars gasification[J]. Fuel, 2014, 126(15):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4aa1229240230f3069e2580be627a5f2
    [12] GUIZANI C, ESCUDERO-SANZ F J, SALVADOR S. The gasification reactivity of high-heating-rate chars in single and mixed atmospheres of H2O and CO2[J]. Fuel, 2013, 108:812-823. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=756251f46448e034db7f30a07b3719d6
    [13] EVERSON, R C, NEOMAGUS H W J P, KASAINI H, NJAPHA D. Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards:Gasification with carbon dioxide and steam[J]. Fuel, 2006, 85(7/8):1076-1082. http://cn.bing.com/academic/profile?id=6ef6522d219994bff5a3959d29250c97&encoded=0&v=paper_preview&mkt=zh-cn
    [14] HUANG Z M, ZHANG J S, ZHAO Y, ZHANG H, YUE G X, SUDA T, NARUKAWA M. Kinetic studies of char gasification by steam and CO2 in the presence of H2 and CO[J]. Fuel Process Technol, 2010, 91(8):843-847. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4ec1677c9eb4930dd4b7c660186dbad
    [15] BUTTERMAN H C, CASTALDI M J. Influence of CO2 injection on biomass gasification[J]. Ind Eng Chem Res, 2007, 46(26):8875-8886.
    [16] ROBERTS D G, HARRIS D J. Char gasification in mixtures of CO2 and H2O:Competition and inhibition[J]. Fuel, 2007, 86(17/18):2672-2678.
    [17] CHEN C, ZHANG S, XU K, LUO G Q, YAO H. Experimental and modeling study of char gasification with mixtures of CO2 and H2O[J]. Energy Fuels, 2016, 30(3):1628-1635. doi: 10.1021/acs.energyfuels.5b02294
    [18] UMEMOTE S, KAJITANI S, HARA S. Modeling of coal char gasification in coexistence of CO2 and H2O considering sharing of active sites[J]. Fuel, 2013, 103(1):14-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af299da191151eacddb65fca3faf582b
    [19] FUSHIMI C, GOTO M, TSUTSUMI A, HAYASHI J I, CHIBA T. Steam gasification characteristics of coal with rapid heating[J]. J Anal Appl Pyrolysis, 2003, 70(2):185-197. doi: 10.1016/S0165-2370(02)00131-6
    [20] ZHANG R, WANG Q H, LUO Z Y, FANG M X, CEN K F. Competition and inhibition effects during coal char gasification in the mixture of H2O and CO2[J]. Energy Fuels, 2013, 27(9):5107-5115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=37c9773b6fcbbe4852aac06575b613f7
    [21] TAY H L, KAJITANI S, ZHANG S, LI C Z. Effects of gasifying agent on the evolution of char structure during the gasification of Victorian brown coal[J]. Fuel, 2013, 103:22-28. doi: 10.1016/j.fuel.2011.02.044
    [22] WANG M J, ROBERTS D G, KOCHANEK M A, HARRIS D J, CHANG L P, LI C Z. Raman spectroscopic investigations into links between intrinsic reactivity and char chemical structure[J]. Energy Fuels, 2014, 28(1):285-290. doi: 10.1021/ef401281h
    [23] ROBERTS D G, HARRISA D J. Char gasification in mixtures of CO2 and H2O:Competition and inhibition[J]. Fuel, 2007, 86(17/18):2672-2678.
    [24] LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13):1700-1707. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5f1d929e70499f5b83966ba0dfc5e28c
    [25] SEKINE Y, ISHIKAWA K, KIKUCHI E, MATSUKATA M, AKIMOTO A. Reactivity and structural change of coal char during steam gasification[J]. Fuel, 2006, 85(2):122-126. doi: 10.1016/j.fuel.2005.05.025
    [26] WANG M J, TIAN J L, ROBERTS D G, CHANG L P, XIE K C. Interactions between corncob and lignite during temperature-programmed co-pyrolysis[J]. Fuel, 2015, 142(15):102-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7ca721f4b2c8a790140c41ef9b025f8
    [27] LIU X H, ZHENG Y, LIU Z H, DING H R, HUANG X H, ZHENG C G. Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy[J]. Fuel, 2015, 157(1):97-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ed9911a9441d0a7ded235713cb3300c7
    [28] LIVNEH T, BAR-ZIV E, SENNECA Q, SALATINO P. Evolution of reactivity of highly porous chars from Raman microscopy[J]. Combust Sci Technol, 2000, 153(1):65-82. doi: 10.1080/00102200008947251
    [29] ESPINAL J F, MONDRAGON F, TRUONG T N. Thermodynamic evaluation of steam gasification mechanisms of carbonaceous materials[J]. Carbon, 2009, 47(13):3010-3018. doi: 10.1016/j.carbon.2009.06.048
    [30] JING X L, WANG Z Q, ZHANG Q, YU Z L, LI C Y, HUANG J J, FANG Y T. Evaluation of CO2 gasification reactivity of different coal rank chars by physicochemical properties[J]. Energy Fuels, 2013, 27(12):7287-7293. doi: 10.1021/ef401639v
    [31] MALEKSHAHIAN M, HILL J M. Effect of pyrolysis and CO2 gasification pressure on the surface area and pore size distribution of petroleum coke[J]. Energy Fuels, 2011, 25(11):5250-5256. doi: 10.1021/ef201231w
    [32] DING L, ZHANG Y Q, WANG Z Q, HUANG J J, FANG Y T. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char[J]. Bioresour Technol, 2014, 173:11-20. doi: 10.1016/j.biortech.2014.09.007
    [33] WU X J, ZHANG Z X, PIAO G L, HE X, CHEN Y S, KOBAYASHI N, MORI S, ITAYA Y. Behavior of mineral matters in chinese coal ash melting during char-CO2/H2O gasification reaction[J]. Energy Fuels, 2009, 23(5):2420-2428. doi: 10.1021/ef801002n
    [34] KLOSE W, WOLKI M. On the intrinsic reaction rate of biomass char gasification with carbon dioxide and steam[J]. Fuel, 2005, 84(7/8):885-892. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd88d51e3f60dbcaf331889c7c65f22b
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  23
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-25
  • 修回日期:  2019-02-24
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-04-10

目录

    /

    返回文章
    返回