留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe的分散程度对煤焦催化加氢气化的影响

张峰 孙浩 张建树 严帅 曲旋 张荣 毕继诚

张峰, 孙浩, 张建树, 严帅, 曲旋, 张荣, 毕继诚. Fe的分散程度对煤焦催化加氢气化的影响[J]. 燃料化学学报(中英文), 2019, 47(4): 402-410.
引用本文: 张峰, 孙浩, 张建树, 严帅, 曲旋, 张荣, 毕继诚. Fe的分散程度对煤焦催化加氢气化的影响[J]. 燃料化学学报(中英文), 2019, 47(4): 402-410.
ZHANG Feng, SUN Hao, ZHANG Jian-shu, YAN Shuai, QU Xuan, ZHANG Rong, BI Ji-cheng. Effect of dispersion degree of iron on catalytic hydrogasification of coal char[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 402-410.
Citation: ZHANG Feng, SUN Hao, ZHANG Jian-shu, YAN Shuai, QU Xuan, ZHANG Rong, BI Ji-cheng. Effect of dispersion degree of iron on catalytic hydrogasification of coal char[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 402-410.

Fe的分散程度对煤焦催化加氢气化的影响

基金项目: 

国家自然科学基金 U1703253

详细信息
  • 中图分类号: TQ530.2

Effect of dispersion degree of iron on catalytic hydrogasification of coal char

Funds: 

the National Natural Science Foundation of China U1703253

More Information
    Corresponding author: ZHANG Jian-shu, Tel:0993-2057277,E-mail: zjschem@163.com
  • 摘要: 在加压固定床反应器上研究了Fe催化剂在不同比表面积煤焦中分散性对催化加氢气化性能的影响,利用XRD、BET、H2-TPR、FT-IR、TEM、拉曼光谱对煤焦及催化剂进行了分析表征。结果表明,煤焦活性位点和石墨化程度并非影响催化气化反应的唯一因素,而催化剂的分散性对反应影响更大。煤焦的比表面积越大,Fe催化剂在煤焦表面的分散更均匀,催化剂活性组分平均晶粒粒径越小,并可以促进煤催化加氢气化中间相产物Fe3C的生成,甲烷收率越高。对于比表面积较高的900-char,在氢气压力为2 MPa,温度为750 ℃,Fe负载量为5%(质量分数)时,催化加氢气化甲烷收率可达53%。在900-char上考察了Fe催化剂负载量对催化加氢气化的影响,甲烷收率呈先增加后降低的趋势,Fe负载量存在饱和点。
  • 图  1  催化加氢气化加压固定床反应装置示意图

    Figure  1  Schematic diagram of pressurized fixed bed reactor for catalytic hydrogasification

    1: mass flowmeter; 2: cutoff valve; 3: pressure gauge; 4: electric furnace; 5: ball valve; 6: reactor; 7: K thermocouple; 8: sample; 9: quartz sand; 10: reducing pressure valve; 11: back pressure valve; 12: circulating cooling system; 13: temperature control system; 14: GC; 15: wet air flowmeter

    图  2  不同温度预处理煤焦的拉曼分峰拟合谱图

    Figure  2  Raman peak fitting of coal char pretreated at different temperatures

    (a): De-char; (b): 750-char; (c): 800-char; (d): 850-char; (e): 900-char; (f): 950-char

    图  3  不同温度预处理煤焦红外光谱谱图

    Figure  3  Infrared spectra of coal char pretreated at different temperatures

    图  4  Fe-Ca负载到煤焦的H2-TPR谱图

    Figure  4  H2-TPR spectra of Fe-Ca loaded coal chars

    图  5  不同比表面积煤焦负载Fe-Ca的XRD谱图

    Figure  5  XRD patterns of Fe-Ca loaded on different surface coal chars

    1: Ca(OH)2; 2: FeO; 3: Fe2O3; 4: Fe3O4; 5: Fe3C; 6: Fe

    图  6  比表面积对催化加氢气化甲烷收率的影响

    Figure  6  Effect of specific surface area on the methane yield of catalytic hydrogasification

    (a): wCH4of 5Fe-t-char; (b): VCH4 of 5Fe-t-char; (c): wCH4 of 10Fe-t-char; (d): VCH4 of 10Fe-t-char

    图  7  煤焦比表面积对甲烷收率的影响

    Figure  7  Effect of specific surface area of coal char on methane yield

    图  8  催化剂添加量对加氢气化甲烷收率的影响

    Figure  8  Effect of catalyst addition on the yield of methane in hydrogasification

    (a): wCH4 of xFe-900-char (x=3, 5, 10, 15)(wCH4/%); (b): VCH4 of xFe-900-char (x=3, 5, 10, 15)

    图  9  负载5%Fe的900-char中添加Ca(a、b)和未添加Ca(c、d)加氢气化反应前(a、c)和后(b、d)的TEM照片

    Figure  9  TEM diagrams of 900-char loaded with 5% Fe or Ca (a, b) and without Ca (c, d) before (a, c) and after (b, d) hydrogasification

    表  1  不同温度预处理煤焦的元素分析

    Table  1  Ultimate analysis of char samples at different pretreatment temperatures

    Sample Ultimate analysis wdaf/%
    C H N S O*
    De-char 93.200 0.450 1.210 0.150 4.990
    750-char 94.220 1.334 1.660 0.214 2.572
    800-char 93.420 1.282 1.320 0.214 3.764
    850-char 91.920 1.684 1.890 0.270 4.506
    900-char 91.630 1.326 1.550 0.220 5.027
    950-char 92.550 1.334 1.270 0.249 4.597
    *: by difference
    下载: 导出CSV

    表  2  不同温度预处理煤焦的孔结构

    Table  2  Pore structure parameters of char samples pretreated at different temperatures

    Sample BET surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Average pore size d/nm
    De-char 4.8 0.003 7.75
    750-char 58.3 0.042 2.88
    800-char 155.7 0.061 1.56
    850-char 381.8 0.156 1.63
    900-char 701.8 0.302 1.72
    950-char 612.1 0.263 1.72
    下载: 导出CSV

    表  3  不同温度预处理煤焦的拉曼分峰拟合面积比

    Table  3  Parameters of Raman peak fitting area ratio of coal char pretreated at different temperatures

    Sample ID1/IG ID3+D4/IG IG/IAll
    De-char 1.95 4.23 0.139
    750-char 2.96 3.68 0.131
    800-char 2.08 5.98 0.120
    850-char 1.65 4.93 0.132
    900-char 2.23 4.57 0.128
    950-char 1.98 4.96 0.126
    下载: 导出CSV

    表  4  不同比表面积煤焦负载5%Fe-1%Ca的XRD表征相关参数

    Table  4  XRD characterization parameters of coal chars with different specific surfaces loaded with 5%Fe-1%Ca

    Sample Chem form Average crystallite size d/nm
    dFe dFe3C
    5Fe-750-char FeO,Fe2O3, Fe3O4 - -
    5Fe-800-char FeO - -
    5Fe-850-char Fe, Fe3C 52.94 35.18
    5Fe-900-char Fe, Fe3C 43.62 21.05
    5Fe-950-char Fe, Fe3C 49.43 26.38
    下载: 导出CSV
  • [1] 洪冰清, 战书鹏, 王兴军, 王辅臣, 于广锁.不同金属化合物催化呼和浩特煤加氢气化实验研究[J].燃料化学学报, 2012, 40(7):782-789. doi: 10.3969/j.issn.0253-2409.2012.07.003

    HONG Bing-qing, ZHAN Shu-peng, WANG Xing-jun, WANG Fu-cheng, YU Guang-suo. Experimental study on Hohhot coal hydrogasification catalysed by different metal compounds[J]. J Fuel Chem Technol, 2012, 40(7):782-789. doi: 10.3969/j.issn.0253-2409.2012.07.003
    [2] JIANG J, LIU Z, LIU Q. Synergetic catalysis of calcium oxide and iron in hydrogasification of char[J]. Energy Fuels, 2017, 31:198-204. doi: 10.1021/acs.energyfuels.6b02026
    [3] OHTSUKA Y, TAMAI Y, TOMITA A. Iron-catalyzed gasification of brown coal at low temperatures[J]. Energy Fuels, 1987, 1(1):32-36. doi: 10.1021/ef00001a006
    [4] MATSUMOTO S. Catalyzed hydrogasification of Yallourn char in the presence of supported hydrogenation nickel catalyst[J]. Energy Fuels, 1991, 5(1):60-63. doi: 10.1021/ef00025a009
    [5] MATSUMOTO S, SAKAGAMI S. Catalytic gasification activity of iron enhanced by spilt-over hydrogen[J]. Stud Surf Sci Catal, 1993, 77:409-412. doi: 10.1016/S0167-2991(08)63223-1
    [6] YAN S, BI J, QU X. The behavior of catalysts in hydrogasification of sub-bituminous coal in pressured fluidized bed[J]. Appl Energy, 2017, 206:401-412. doi: 10.1016/j.apenergy.2017.08.189
    [7] HAGA T, NISHIYAMA Y. Promotion of iron-group catalysts by a calcium salt in hydrogasification of carbons at elevated pressures[J]. Ind Eng Chem Res, 1987, 26:1202-1206. doi: 10.1021/ie00066a023
    [8] YUAN S, ZHANG N, QU X, BI J, CAO Q, WANG J. Promoted catalysis of calcium on the hydrogasification reactivity of iron-loaded subbituminous coal[J]. Fuel, 2017, 200:153-161. doi: 10.1016/j.fuel.2017.03.066
    [9] YUAN S, QU X, ZHANG R, BI J. Effect of calcium additive on product yields in hydrogasification of nickel-loaded Chinese sub-bituminous coal[J]. Fuel, 2015, 147:133-140. doi: 10.1016/j.fuel.2015.01.004
    [10] SUZUKI T, MINAMI H, YAMADA T, HOMMA T. Catalytic activities of ion-exchanged nickel and iron in low temperature hydrogasification of raw and modified birch chars[J]. Fuel, 1994, 73(12):1836-1841. doi: 10.1016/0016-2361(94)90208-9
    [11] ASAMI K, OHTSUKA Y. Catalytic behavior of iron in the gasification of coal with hydrogen[J]. Stud Surf Sci Catal, 1993, 77:413-416. doi: 10.1016/S0167-2991(08)63224-3
    [12] JAWHARI T, ROID A, CASADO J. Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon, 1995, 33(11):1561-1565. doi: 10.1016/0008-6223(95)00117-V
    [13] BEYSSAC O, GOFFÉ B, PETITET J P, FROIGNEUX E, MOREAU M, ROUZAUD J N. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy[J]. Spectrochim Acta A, 2003, 59(10):2267-2276. doi: 10.1016/S1386-1425(03)00070-2
    [14] CHABALALA V P, WAGNER N, POTGIETER-VERMAAK S. Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal petrography; Part1[J].Fuel Process Technol, 2011, 92(4):750-756. doi: 10.1016/j.fuproc.2010.09.006
    [15] HE X, ZHANG X, JIAO Y, ZHU J S, CHEN X W, LI C Y, LI H S. Complementary analyses of infrared transmission and diffuse reflection spectra of macerals in low-rank coal and application in triboelectrostatic enrichment of active maceral[J]. Fuel, 2017, 192:93-101. doi: 10.1016/j.fuel.2016.12.009
    [16] 李娜, 李阳, 班延鹏, 宋银敏, 周华从, 智科端, 何润霞, 滕英跃, 杨柯利, 刘全生.胜利褐煤焦钙催化水蒸气气化反应中活性微结构分析[J].燃料化学学报, 2016, 44(11):1297-1303. doi: 10.3969/j.issn.0253-2409.2016.11.003

    LI Na, LI Yang, BAN Yan-peng, SONG Yin-min, ZHOU Hua-cong, ZHI Ke-rui, HE Run-xia, TENG Ying-yue, YANG Ke-li, LIU Quan-sheng. Analysis of active microstructure during steam gasification of Shengli char catalyzed by calcium component[J]. J Fuel Chem Technol, 2016, 44(11):1297-303. doi: 10.3969/j.issn.0253-2409.2016.11.003
    [17] HASEGAWA Y, OTANI R, YONEZAWA S, TAKASHIM M. Reaction between carbon dioxide and elementary fluorine[J]. J Fluorine Chem, 2008, 128(1):17-28. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023658796/
    [18] LIU L, CAO Y, LIU Q. Kinetics studies and structure characteristics of coal char under pressurized CO2gasification conditions[J]. Fuel, 2015, 146:103-110. doi: 10.1016/j.fuel.2015.01.002
    [19] KLOSE W, WÖLKI M. On the intrinsic reaction rate of biomass char gasification with carbon dioxide and steam[J]. Fuel, 2005, 84(7):885-892. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd88d51e3f60dbcaf331889c7c65f22b
    [20] MCKEE D W. Effect of metallic impurities on the gasification of graphite in water vapor and hydrogen[J]. Carbon, 1974, 12(4):453-464. doi: 10.1016/0008-6223(74)90011-6
    [21] CHEN Z, WANG F, LI H, YANG Q, WANG L, LI X. Low-temperature selective catalytic reduction of NOx with NH3over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase[J]. Ind Eng Chem Res, 2012, 51(1):202-212. doi: 10.1021/ie201894c
    [22] PINEAU A, KANARI N, GABALLAH I. Kinetics of reduction of iron oxides by H2:Part I:Low temperature reduction of hematite[J]. Thermochim Acta, 2006, 447(1):89-100. doi: 10.1016/j.tca.2005.10.004
    [23] MATSUMOTO S, JR P L W. char gasification in steam at 1123 K catalyzed by K, Na, Ca and Fe-effect of H2, H2S and COS[J]. Carbon, 1986, 24(3):277-285. doi: 10.1016/0008-6223(86)90228-9
    [24] LECEA S M D, ALMELA-ALARCÍN M, LINARES-SOLANO A. Calcium-catalysed carbon gasification in CO2 and steam[J]. Fuel, 1990, 69(1):21-27. doi: 10.1016/0016-2361(90)90253-M
    [25] 战书鹏, 王兴军, 洪冰清, 于广锁, 王辅臣.褐煤催化加氢气化实验研究[J].燃料化学学报, 2012, 40(1):8-14. doi: 10.3969/j.issn.0253-2409.2012.01.002

    ZHAN Shu-peng, WANG Xing-jun, HONG Bing-qing, YU Guang-suo, WANG Fu-cheng. Experimental study on catalytic hydrogasification of lignite[J]. J Fuel Chem Technol, 2012, 40(1):8-14. doi: 10.3969/j.issn.0253-2409.2012.01.002
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  18
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-06
  • 修回日期:  2019-02-02
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-04-10

目录

    /

    返回文章
    返回