留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and physicochemical characterization of polyoxymethylene dimethyl ethers

KANG Mei-rong SONG He-yuan JIN Fu-xiang CHEN Jing

康美荣, 宋河远, 金福祥, 陈静. 聚甲氧基二甲醚的合成及其物理化学性质表征[J]. 燃料化学学报(中英文), 2017, 45(7): 837-845.
引用本文: 康美荣, 宋河远, 金福祥, 陈静. 聚甲氧基二甲醚的合成及其物理化学性质表征[J]. 燃料化学学报(中英文), 2017, 45(7): 837-845.
KANG Mei-rong, SONG He-yuan, JIN Fu-xiang, CHEN Jing. Synthesis and physicochemical characterization of polyoxymethylene dimethyl ethers[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 837-845.
Citation: KANG Mei-rong, SONG He-yuan, JIN Fu-xiang, CHEN Jing. Synthesis and physicochemical characterization of polyoxymethylene dimethyl ethers[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 837-845.

聚甲氧基二甲醚的合成及其物理化学性质表征

基金项目: 

the National Natural Science Foundation of China 21473225

详细信息
  • 中图分类号: O621.2;TQ519

Synthesis and physicochemical characterization of polyoxymethylene dimethyl ethers

Funds: 

the National Natural Science Foundation of China 21473225

More Information
  • 摘要: 聚甲氧基二甲醚(H3CO(CH2O)nCH3,PODEn或DMMnn ≥ 2)具有独特的物理化学性质;作为一种柴油添加剂,可以有效提高油品燃烧效率并达到节能减排的目的。首先合成了一系列聚合度n为2、3、4和5单一组分的聚甲氧基二甲醚,采用NMR、FT-IR、Raman和DFT计算等手段对每个聚甲氧基二甲醚单体的化学结构进行表征,并对其在298.15-323.15K温度的密度和黏度进行了测试。结果表明,聚甲氧基二甲醚的密度和黏度随着温度的升高而逐渐降低,随着聚合度的增加而逐渐升高。同时,聚甲氧基二甲醚PODEnn =2-5)的闪点和倾点以及溶解热和凝固热均随着聚合度的增加而提高。
  • Figure  1  Synthesis of PODEn from methylal and trioxymethylene

    Figure  2  FT-IR spectra of PODEn

    (a): PODE2; (b): PODE3; (c): PODE4; (d): PODE5

    Figure  3  Raman spectra of PODEn

    (a): PODE2; (b): PODE3; (c): PODE4; (d): PODE5

    Figure  4  Temperature dependence of density for PODEn

    ■: PODE2; ●: PODE3; ▲: PODE4; ▼: PODE5

    Figure  5  Temperature dependence of viscosity for PODEn

    ■: PODE2; ●: PODE3; ▲: PODE4; ▼: PODE5

    Figure  6  SC profiles of PODEn

    (a): PODE2; (b): PODE3; (c): PODE4; (d): PODE5

    Table  1  Comparison of the experimental and calculated vibration wave number and the assignment of various radicals in PODEn

    Table  2  Density of PODEn under different temperatures

    Table  3  Viscosity of PODEn under different temperatures

    Table  4  Flash point and pour point of PODEn

    Table  5  Thermal characteristics of PODEn

  • [1] UCHIDA T, KURITA Y, KUBO M. The dipole moments and the strucures of polyoxymethylene dimethyl ethers[J]. J Polym Sci, 1956, 19(92):365-372. doi: 10.1002/pol.1956.120199215
    [2] ARVIDSON M, FAKLEY M E, SPENCER M S. Lithium Halide-Assisted formation of polyoxymethylene dimethyl ethers from dimethoxymethane and formaldehyde[J]. J Mol Catal, 1987, 41(3):391-393. doi: 10.1016/0304-5102(87)80118-9
    [3] VIGIER F, COUTANCEAU C, LÉGERJ M, DUBOIS J L. Polyoxymethylene dimethyl ether (CH3O(CH2O)nCH3) oxidation on Pt and Pt/Ru supported catalysts[J]. J Power Sources, 2008, 175(1):82-90. doi: 10.1016/j.jpowsour.2007.09.053
    [4] MASAHIRO W, HIROYUKI U, STEVE B, JEAN-LUC D. Fuel cells using an oxy-carbon fuel soluble in aqueous meduim: EP, 1993159A1[P]. 2008-11-19.
    [5] BURGER J, SIEGERT M, STRÖFER E, HASSE H. Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel:Properties, synthesis and purification concepts[J]. Fuel, 2010, 89(11):3315-3319. doi: 10.1016/j.fuel.2010.05.014
    [6] ZHAO Q, WANG H, QIN ZHF, WU ZH W, WU J B, FAN W B, WANG J G. Synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene with molecular sieves as catalysts[J]. J Fuel Chem Technol, 2011, 39(12):918-923. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17845.shtml
    [7] WU J B, WU Z W, WANG R Y, SHI R P, QIN Z F, ZHU H Q, DONG M, FAN W B, WANG J G. Recent research progresses in the catalytic synthesis of methyl formate, dimethoxymethane and polyoxymethylene dimethyl ethers from methano[J]. J Fuel Chem Technol, 2015, 43(7):816-828. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18658.shtml
    [8] GAO X C, YANG W M, LIU Z C, GAO H X. Catalytic performance of HZSM-5 molecular sieve for synthesis of polyoxymethylene dimethyl ethers[J]. Chin J Catal, 2012, 33(8):1389-1394. https://www.researchgate.net/publication/275884405_Catalytic_Performance_of_HZSM-5_Molecular_Sieve_for_Synthesis_of_Polyoxy-methylene_Dimethyl_Ethers
    [9] LI H J, SONG H L, ZHAO F, CHEN L W, XIA CH G. Chemical equilibrium controlled synthesis of polyoxymethylene dimethyl ethers over sulfated titania[J]. J Energy Chem, 2015, 24(2):239-244. doi: 10.1016/S2095-4956(15)60307-2
    [10] REN Y, HUANG Z H, MIAO H Y, DI Y G, JIANG D M, ZENG K, LIU B, WANG X B. Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends[J]. Fuel, 2008, 87(12):2691-2697. doi: 10.1016/j.fuel.2008.02.017
    [11] ZHAO Y P, XU Z, CHEN H, FU Y C, SHEN J Y. Mechanism of chain propagation for the synthesis of polyoxymethylene dimethyl ethers[J]. J Energy Chem, 2013, 22(6):833-836. doi: 10.1016/S2095-4956(14)60261-8
    [12] BURGER J, STRÖFER E, HASSE H. Chemical equilibrium and reaction kinetics of the heterogeneously catalyzed formation of poly(oxymethylene) dimethyl ethers from methylal and trioxane[J]. Ind Eng Chem Res, 2012, 51(39):12751-12761. doi: 10.1021/ie301490q
    [13] CHEN J, SONG H Y, XIA C G, KANG M R, JIN R H. System and method for continuously producing polyoxymethylene dialkyl ethers: AU, 2012268915[P]. 2014-05-15.
    [14] CHEN J, SONG H Y, XIA C G, LI Z. Method for synthesizing polyoxymethylene dimethyl ethers catalyzed by an ionic liquid: US, 0288343[P]. 2011-11-24.
    [15] SCOTT A P, RADOM L. Harmonic vibrational frequencies:An evaluation of Hartree-Fock, Moller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors[J]. J Phys Chem, 1996, 100(41):16502-16513. doi: 10.1021/jp960976r
    [16] PARLAK C. Theoretical and experimental vibrational spectroscopic study of 4-(1-pyrrolidinuyl) piperidine[J]. J Mol Struct, 2010, 966(1):1-7. http://www.sciencedirect.com/science/article/pii/S0022286009007558
    [17] DIKMEN G, ALVER Ö. NMR, FT-IR, Raman and UV-Vis spectroscopic investigation and DFT study of 6-bromo-3-pyridinyl boronic acid[J]. J Mol Struct, 2015, 1099:625-632. doi: 10.1016/j.molstruc.2015.05.063
    [18] ANDERSSON M P, UVDAL P. New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ξ basis set 6-311+G(d, p)[J]. J Phys Chem A, 2005, 109(12):2937-2941. doi: 10.1021/jp045733a
    [19] SONG D Y, CHEN J. Densities and viscosities for ionic liquids mixtures containing[eOHmin][BF4], [bmim][BF4] and[bpy][J]. J Chem Thermodyn, 2014, 77:137-143. doi: 10.1016/j.jct.2014.05.016
    [20] MEHRDAD A, NIKNAM Z. Investigation on the interactions of poly(ethylene oxide) and ionic liquid 1-butyl-3-methyl-imidazolium bromide by viscosity and spectroscopy[J]. J Chem Eng Data, 2016, 61(5):1700-1709. doi: 10.1021/acs.jced.5b00428
    [21] LINTON W H, GOODMAN H H. Physical properties of high molecular weight acetal resins[J]. J Appl Polym Sci, 1959, 1(2):179-184. doi: 10.1002/app.1959.070010208
    [22] GUNBAS G, HAFEZI N, SHEPPARD W L, OLMSTEAD M M, STOYANOVA I V, THAM F S, MEYER M P, MASCAL M. Extreme oxatriquinanes and a record C-O bond length[J]. Nat Chem, 2012, 4(12):1018-1023. doi: 10.1038/nchem.1502
    [23] ALLINGER N L, LⅡ J H, SCHAEFER H F. Molecular mechanics (MM4) studies on unusually long carbon-carbon bond distances in hydrocarbons[J]. J Chem Theory Comput, 2016, 12(6):2774-2778. doi: 10.1021/acs.jctc.5b00926
    [24] SHAIKH M S, SHARIFF A M, BUSTAM M A, MURSHID G. Physicochemical properties of aqueous solutions of sodium glycinate in the non-precipitation regime from 298.15 to 343.15K[J]. Chin J Chem Eng, 2015, 23(3):536-540. doi: 10.1016/j.cjche.2013.11.001
    [25] MAZINANI S, SAMSAMI A, JAHANMIRI A. Solubiity (at low partial pressures), density, viscosity, and corrosion rate of carbon dioxide in blend solutions of monoethanolamine (MEA) and sodium glycinate (SG)[J]. J Chem Eng Data, 2011, 56(7):3163-3168. doi: 10.1021/je2002418
    [26] KUMARI A, SANDEEPA K, KUMAR T P, SATYAVATHI B. Solubility, thermodynamic properties, and derived excess properties of benzoic acid in (acetic acid + water) and (acetic acid + toluene) binary mixtures[J]. J Chem Eng Data, 2016, 61(1):67-77. doi: 10.1021/acs.jced.5b00197
    [27] PHOON L Y, HASHIM H, MAT R, MUSTAFFA A A. Flash point prediction of tailor-made green diesel blends containing B5 palm oil biodiesel and alcohol[J]. Fuel, 2016, 175:287-293. doi: 10.1016/j.fuel.2016.02.027
    [28] PRUGH R W. The relationship between flash point and LFL with application to hybrid mixtures[J]. Process Saf Prog, 2008, 27(2):156-163. doi: 10.1002/(ISSN)1547-5913
    [29] PRAK D J L, COWART J S, TRULOVE P C. Density and viscosity from 293.15 to 373.15K, speed of sound and bulk modulus from 293.15 to 343.15 K, surface tension, and flash point of binary mixtures of bicyclohexyl and 1, 2, 3, 4-tetrahydronaphthalene or trans-decahydronaphthalene at 0.1MPa[J]. J Chem Eng Data, 2016, 61(1):650-661. doi: 10.1021/acs.jced.5b00790
    [30] FLETCHER P D I, ROBERTS N A, URQUHART C. Solubility behavior, crystallization kinetics and pour point:A comparison of linear alkane and triacyl glyceride solute/solvent mixtures[J]. J Ind Eng Chem, 2016, 34:382-389. doi: 10.1016/j.jiec.2015.12.012
    [31] GB 19147-2013, Automobile diesel fuels (V)[S].
    [32] BRANDENBURG A, WAPPLER E, KITA J, MOOS R. Miniaturized ceramic DSC device with strain gauge-based mass detection-first steps to realize a fully integrated DSC/TGA device[J]. Sens Actuators A, 2016, 241:145-151. doi: 10.1016/j.sna.2016.02.011
    [33] JIN X, XU X D, ZHANG X S, YIN Y G. Determination of the PCM melting temperature rang using DSC[J]. Thermochim Acta, 2014, 595:17-21. doi: 10.1016/j.tca.2014.09.004
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  43
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-30
  • 修回日期:  2017-05-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-07-10

目录

    /

    返回文章
    返回