留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型Brønsted-Lewis双酸位碳基固体酸的制备及其催化生物柴油的合成

吴昊 范明明 张萍波 蒋平平

吴昊, 范明明, 张萍波, 蒋平平. 新型Brønsted-Lewis双酸位碳基固体酸的制备及其催化生物柴油的合成[J]. 燃料化学学报(中英文), 2019, 47(1): 60-65.
引用本文: 吴昊, 范明明, 张萍波, 蒋平平. 新型Brønsted-Lewis双酸位碳基固体酸的制备及其催化生物柴油的合成[J]. 燃料化学学报(中英文), 2019, 47(1): 60-65.
WU Hao, FAN Ming-ming, ZHANG Ping-bo, JIANG Ping-ping. Preparation and application of a novel carbon-based solid acid with Brønsted-Lewis double acid sites for synthesis of biodiesel[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 60-65.
Citation: WU Hao, FAN Ming-ming, ZHANG Ping-bo, JIANG Ping-ping. Preparation and application of a novel carbon-based solid acid with Brønsted-Lewis double acid sites for synthesis of biodiesel[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 60-65.

新型Brønsted-Lewis双酸位碳基固体酸的制备及其催化生物柴油的合成

基金项目: 

国家自然科学基金 21306063

江苏省自然科学基金 BK20130123

详细信息
  • 中图分类号: TQ519

Preparation and application of a novel carbon-based solid acid with Brønsted-Lewis double acid sites for synthesis of biodiesel

Funds: 

the National Natural Science Foundation of China 21306063

the Natural Science Foundation of Jiangsu Province BK20130123

More Information
  • 摘要: 以羧甲基纤维素钠(CMC)与硫酸铁螯合反应生成的螯合物为碳前驱体,以浓硫酸为磺化试剂,制备新型碳基固体酸催化剂。采用红外(FT-IR)、X射线衍射(XRD)、吡啶红外、扫描电子显微镜(SEM)、热重分析仪(TGA)、能谱仪(EDS)对催化剂进行表征。结果表明,该催化剂同时具有Brønsted和Lewis酸位点,是具有双酸位的碳基固体酸催化剂。将其应用到油酸与甲醇的酯化反应制备生物柴油体系中,考察了不同反应条件对油酸转化率的影响。在反应温度为70℃,反应时间为6h,油酸与甲醇物质的量比为1:10,催化剂用量为油酸质量7.5%条件下,油酸的转化率可达到96.8%。此外,对该催化剂的稳定性进行研究发现该催化剂有着良好的重复使用性和疏水性。
  • 图  1  CMC、Fe-CMC、Fe-CMC-SO3H和使用五次之后催化剂的红外光谱谱图

    Figure  1  FT-IR spectra of CMC, Fe-CMC, Fe-CMC-SO3H and after fifth used catalyst

    图  2  Fe-CMC-SO3H催化剂的XRD谱图

    Figure  2  XRD pattern of Fe-CMC-SO3H catalyst

    图  3  Fe-CMC-SO3H催化剂的吡啶红外光谱谱图

    Figure  3  Pyridine adsorption FT-IR spectrum of Fe-CMC-SO3H catalyst

    图  4  Fe-CMC-SO3H催化剂的SEM照片和元素的EDS图

    Figure  4  SEM images of Fe-CMC-SO3H catalyst and EDS images of elements

    (a): Fe-CMC-SO3H; (b): Fe-CMC-SO3H; (c): C; (d): O; (e): S; (f): Fe

    图  5  Fe-CMC-SO3H催化剂的TGA曲线

    Figure  5  TGA curves of Fe-CMC-SO3H catalyst

    图  6  催化剂的重复次数对油酸转化率的影响

    Figure  6  Influence of recycling times of catalyst on the conversion of oleic acid

    reaction conditions: reaction time is 6 h, reaction temperature is 70 ℃, the molar ratio of oleic acid to methanol is 1:10, mass ratio of catalyst to oleic acid is 7.5%

    图  7  含水量对油酸转化率的影响

    Figure  7  Influence of water content on the conversion of oleic acid

    reaction conditions: reaction time is 6 h, reaction temperature is 70 ℃, the molar ratio of oleic acid to methanol is 1:10, mass ratio of catalyst to oleic acid is 7.5%

    表  1  Fe-CMC-SO3H催化剂不同元素的含量

    Table  1  Content of different elements in Fe-CMC-SO3H catalyst

    Sample Content w/%
    C O S Fe
    Fe-CMC-SO3H 55.71 42.71 1.38 0.2
    Catalyst after fifth used 70.60 28.43 0.83 0.14
    下载: 导出CSV
  • [1] HÖÖK M, TANG X. Depletion of fossil fuels and anthropogenic climate change:A review[J]. Energy Policy, 2013, 52:797-809. doi: 10.1016/j.enpol.2012.10.046
    [2] WILSON K, LEE A F. Rational design of heterogeneous catalysts for biodiesel synthesis[J]. Catal Sci Technol, 2012, 2(5):884-897. doi: 10.1039/c2cy20038d
    [3] LEUNG D Y C, WU X, LEUNG M K H. A review on biodiesel production using catalyzed transesterification[J]. App Energy, 2010, 87(4):1083-1095. doi: 10.1016/j.apenergy.2009.10.006
    [4] ATABANI A E, SILITONGA A S, BADRUDDIN I A, MAHLIA T M I, MEKHILEF M S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics[J]. Renewable Sustainable Energy Rev, 2012, 16(4):2070-2093. doi: 10.1016/j.rser.2012.01.003
    [5] PINZI S, GARCIA I L, LOPEZ-GIMENEZ F J, LUQUE DE CASTRO M D, DORADO G, DORADO M P. The ideal vegetable oil-based biodiesel composition:A review of social, economical and technical implications[J]. Energy Fuels, 2009, 23(5):2325-2341. doi: 10.1021/ef801098a
    [6] DEMIRBAS A. Progress and recent trends in biodiesel fuels[J]. Energy Convers Manage, 2009, 50(1):14-34. doi: 10.1016/j.enconman.2008.09.001
    [7] SU F, GUO Y. Advancements in solid acid catalysts for biodiesel production[J]. Green Chem, 2014, 16(6):2934-2957. doi: 10.1039/C3GC42333F
    [8] 王红红, 刘丽君, 龚树文.新型磷钨酸基固体酸催化油酸酯化合成生物柴油[J].燃料化学学报, 2017, 45(3):303-310. doi: 10.3969/j.issn.0253-2409.2017.03.007

    WANG Hong-hong, LIU Li-jun, GONG Shu-wen. Esterification of oleic acid to biodiesel over a 12-phosphotungstic acid-based solid catalyst[J]. J Fuel Chem Technol, 2017, 45(3):303-310. doi: 10.3969/j.issn.0253-2409.2017.03.007
    [9] SHIBASAKI-KITAKAWA N, HONDA H, KURIBAYASHI H, TODA T, FUKUMURA T, YONEMOTO T. Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst[J]. Bioresour Technol, 2007, 98(2):416-421. doi: 10.1016/j.biortech.2005.12.010
    [10] MARGOLESE D, MELERO J A, CHRISTIANSEN S C, CHMELKA B F, STUCKY G D. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups[J]. Chem Mater, 2000, 12(8):2448-2459. doi: 10.1021/cm0010304
    [11] 李梦天, 蒋平平, 张萍波.碳基固体酸催化剂的制备及其催化油酸甲酯合成[J].精细化工, 2018, 35(4):638-644. http://d.old.wanfangdata.com.cn/Periodical/jxhg201804017

    LI Meng-tian, JIANG Ping-ping, ZHANG Ping-bo. Catalytic synthesis of methyl oleate by carbonbased solid acid[J]. Fine Chem, 2018, 35(4):638-644. http://d.old.wanfangdata.com.cn/Periodical/jxhg201804017
    [12] 娄文勇, 蔡俊, 段章群, 宗敏华.基于纤维素的固体酸催化剂的制备及其催化高酸值废油脂生产生物柴油[J].催化学报, 2011, 32(5):1755-1761. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201111013

    LOU Wen-yong, CAI Jun, DUAN Zhang-qun, ZONG Min-hua. Preparation of cellulose-derived solid acid catalyst and its use for production of biodiesel from waste oils with high acid value[J]. Chin J Catal, 2011, 32(5):1755-1761. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201111013
    [13] ZENG D L, LIU S L, GONG W J, WANG G H, QIU J H, CHEN H X. Synthesis, characterization and acid catalysis of solid acid from peanut shell[J]. Appl Catal A:Gen, 2014, 469:284-289. doi: 10.1016/j.apcata.2013.09.038
    [14] 沈忠权, 余锡孟, 陈纪忠.新型磺化竹炭材料催化酯化反应[J].化工学报, 2015, 66(8):3072-3077. http://d.old.wanfangdata.com.cn/Periodical/hgxb201508042

    SHEN Zhong-quan, YU Xi-meng, CHEN Ji-zhong.Esterification reactions catalyzed by novel sulfonated carbon material derived from bamboo[J]. J Chem Ind Eng, 2015, 66(8):3072-3077. http://d.old.wanfangdata.com.cn/Periodical/hgxb201508042
    [15] 牛生洋, 郝峰鸽.羧甲基纤维素钠的应用进展[J].安徽农业科学, 2006, 34(15):3574-3575. doi: 10.3969/j.issn.0517-6611.2006.15.005

    NIU Sheng-yang, SHAO Feng-ge. Application progress in the carboxymethyl cellulose sodium[J]. J Anhui Agri Sci, 2006, 34(15):3574-3575. doi: 10.3969/j.issn.0517-6611.2006.15.005
    [16] BISWALl D R, SINGH R P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer[J]. Carbohydr Polym, 2004, 57(4):379-387. doi: 10.1016/j.carbpol.2004.04.020
    [17] WANG Y, WANG D, TAN M H, JIANG B, ZHENG J T, TSUBAKI N, WU M B. Monodispersed hollow SO3 H-functionalized carbon/silica as efficient solid acid catalyst for esterification of oleic acid[J]. ACS Appl Mater Interfaces, 2015, 7(48):26767-26775. doi: 10.1021/acsami.5b08797
    [18] WANG Y T, FANG Z, YANG X X. Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid[J]. App Energy, 2017, 204:702-714. doi: 10.1016/j.apenergy.2017.07.060
    [19] YU J T, DEHKHODA A M, ELLIS N. Development of biochar-based catalyst for transesterification of canola oil[J]. Energy Fuels, 2010, 25(1):337-344. doi: 10.1021/ef100977d
    [20] LIU H, CHEN J Z, CHEN L M, XU Y S, GUO X H, FANG D Y. Carbon nanotube-based solid Sulfonic acids as catalysts for production of fatty acid methyl ester via transesterification and esterification[J]. ACS Sustainable Chem Eng, 2016, 4(6):3140-3150. doi: 10.1021/acssuschemeng.6b00156
    [21] ZONG M H, DUAN Z Q, LOU W Y, SMITH T J, WU H. Preparation of a sugar catalyst and its use for highly efficient production of biodiesel[J]. Green Chem, 2007, 9(5):434-437. doi: 10.1039/b615447f
    [22] EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993, 141(2):347-354. doi: 10.1006-jcat.1993.1145/
    [23] 朱烨楠, 马田林, 丁建飞.硫酸改性MCM-41分子筛催化剂的制备及其在甘油脱水制备丙烯醛中的应用[J].合成化学, 2016, 24(1):67-70. http://d.old.wanfangdata.com.cn/Periodical/hchx201601016

    ZHU Ye-nan, MA Tian-lin, DING Jian-fei. Preparation of H2SO4/MCM-41 catalyst and their application in dehydration of glycerol into acrolein[J]. Chin J Synth Chem, 2016, 24(1):67-70. http://d.old.wanfangdata.com.cn/Periodical/hchx201601016
    [24] SHU Q, TANG G Q, LESMANA H, ZOU L X, XIONG D L. Preparation, characterization and application of a novel solid Brønsted acid catalyst SO42-/La3+/C for biodiesel production via esterification of oleic acid and methanol[J]. Renewable Energy, 2018, 119:253-261. doi: 10.1016/j.renene.2017.12.013
    [25] MALINS K, KAMPARS V, BRINKS J, NEIBOLTE L, MURNIEKS R. Synthesis of activated carbon based heterogenous acid catalyst for biodiesel preparation[J]. App Catal B:Environ, 2015, 176:553-558. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eda0736b3854e61942e9c1148fb44fd5
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  35
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-09
  • 修回日期:  2018-11-26
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-01-10

目录

    /

    返回文章
    返回