留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂多相体系煤加氢液化反应与氢传递的研究

赵鹏 李军芳 吴艳 毛学锋 张晓静 常秋连

赵鹏, 李军芳, 吴艳, 毛学锋, 张晓静, 常秋连. 复杂多相体系煤加氢液化反应与氢传递的研究[J]. 燃料化学学报(中英文), 2018, 46(12): 1423-1429.
引用本文: 赵鹏, 李军芳, 吴艳, 毛学锋, 张晓静, 常秋连. 复杂多相体系煤加氢液化反应与氢传递的研究[J]. 燃料化学学报(中英文), 2018, 46(12): 1423-1429.
ZHAO Peng, LI Jun-fang, WU Yan, MAO Xue-feng, ZHANG Xiao-jing, CHANG Qiu-lian. Reaction and hydrogen transfer in complex multi-phase system during coal hydro-liquefaction[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1423-1429.
Citation: ZHAO Peng, LI Jun-fang, WU Yan, MAO Xue-feng, ZHANG Xiao-jing, CHANG Qiu-lian. Reaction and hydrogen transfer in complex multi-phase system during coal hydro-liquefaction[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1423-1429.

复杂多相体系煤加氢液化反应与氢传递的研究

基金项目: 

国家重点研发计划项目 2016YFB0600303

NSFC-山西煤基低碳联合基金 U1610221

详细信息
  • 中图分类号: TQ536

Reaction and hydrogen transfer in complex multi-phase system during coal hydro-liquefaction

Funds: 

the National Key R & D Program of China 2016YFB0600303

NSFC-Joint Funds for Coal Base Low Carbon of Shanxi Province of China U1610221

More Information
  • 摘要: 研究新疆淖毛湖煤(NMH)在四氢萘为溶剂条件下的加氢液化反应行为,探究了液化过程氢传递规律,并借助XRD、饱和磁化强度和扫描电镜表征手段,研究了煤液化条件下铁系催化剂的相态变化对煤液化性能的影响。结果表明,NMH煤在420℃、17 MPa就具有良好的液化效果;催化剂的活性态Fe7S8在煤液化反应初期发挥了催化作用,加氢液化后期,转变为非活性态Fe9S10和FeS;提高催化剂加氢活性并延长反应时间有利于沥青烯和前沥青烯加氢轻质化;催化剂有利于活化气相氢向煤的热解产物和溶剂转移,也有利于活化溶剂中的氢向煤的热解产物转移;溶剂对液化反应的活性氢贡献更大,约为气相氢的两倍,气相氢向溶剂传递的氢量随温度的升高、压力的增大和时间的延长变化不大,气相氢和供氢溶剂供氢与煤和沥青质向油气转化呈正相关。
  • 图  1  不同条件下四氢呋喃不溶物的扫描照片

    (a): 1#; (b): 5#; (c): 7#; (d): 8#; (e): 9#

    Figure  1  SEM image of THFI sample

    图  2  供氢溶剂加氢液化产物的气相色谱图

    Figure  2  Gas chromatography spectrum of hydro-liquefaction products from solvent

    图  3  供氢溶剂四氢萘加氢液化反应路径示意图

    Figure  3  Hydro-liquefaction reaction path of tetralin in DCL

    图  4  不同温度条件下不同氢源的氢贡献量及转移量

    Figure  4  Hydrogen-donating quantity from different hydrogen sources and hydrogen-transfer quantity at different temperature

    图  5  不同氢初压条件下不同氢源的氢贡献量及转移量

    Figure  5  Hydrogen-donating quantity from different hydrogen sources and hydrogen-transfer quantity under different H2 initial pressures

    图  6  不同反应时间条件下不同氢源的氢贡献量及转移量

    Figure  6  Hydrogen-donating quantity from different hydrogen sources and hydrogen-transfer quantity under different residence times

    图  7  不同催化条件下不同氢源的氢贡献量及转移量

    Figure  7  Hydrogen-donating quantity from different hydrogen sources and hydrogen-transfer quantity under different catalysts

    表  1  新疆淖毛湖煤质分析数据

    Table  1  Analysis data of NMH coal

    Ultimate analysis wdaf/%
    C H N S O
    74.97 5.16 1.00 0.20 18.67
    Proximate analysis w/% Petrographic analysis φ/%
    Ad Vdaf V I E M
    5.12 49.69 88.8 0.4 7.6 3.2
    下载: 导出CSV

    表  2  不同条件下淖毛湖煤加氢液化实验数据

    Table  2  NMH coal liquefaction results under different conditions

    No. Cat. t/℃ p/MPa Time t/min Conv. x/% O w/% PAA w/% G w/%
    1# Fe2O3 440 7.5 60 97.25 70.75 1.13 16.30
    2# Fe2O3 420 7.5 0 91.23 56.06 15.85 9.46
    3# Fe2O3 420 7.5 30 94.11 65.63 6.74 12.27
    4# Fe2O3 420 9.5 60 94.12 68.01 2.55 13.77
    5# Fe2O3 420 7.5 60 94.14 67.91 3.57 13.23
    6# Mo-Fe 420 7.5 60 95.05 68.56 3.05 13.53
    7# - 420 7.5 60 87.87 60.04 5.40 12.01
    8# Fe2O3 420 5.5 60 93.66 65.45 6.52 12.53
    9# Fe2O3 420 7.5 90 93.85 67.22 3.77 14.17
    10# Fe2O3 400 7.5 60 86.20 53.81 12.32 10.06
    11# Fe2O3 380 7.5 60 82.55 48.21 10.45 8.89
    下载: 导出CSV

    表  3  不同时间Fe的XRD和饱和磁化强度

    Table  3  XRD and saturation magnetization under different times

    Compound Crystal Time t/min Atmosphere
    0 30 60 90 N2 H2
    Fe7S8 monoclinic
    triclinic
    Fe9S10 hexagonal -
    Fe0.95S hexagonal
    FeS hexagonal
    Fe2O3 cubic
    Fe3O4 - -
    Ms/(emu·g) 0.61 0.41 0.24 0.09 0.18 0.24
    ■:detected; -:not detected
    下载: 导出CSV

    表  4  四氢萘的加氢液化产物组成

    Table  4  Composition of tetralin hydroliquefaction product

    Compound name Toluene Decalin Tetralin Naphthalene
    Content w/% 2.98 0.5 78.57 12.92
    Compound name 1-methylindan butylbenzene n-heptane
    Content w/% 1.81 1.26 1.95
    下载: 导出CSV
  • [1] 刘振宇.煤直接液化技术发展的化学脉络及化学工程挑战[J].化工进展, 2010, 29(2):193-195. http://d.old.wanfangdata.com.cn/Periodical/hgjz201002001

    LIU Zhen-yu. Principal chemistry and chemical engineering challenges in direct coal liquefaction technology[J]. Chem Ind Eng Prog, 2010, 29(2):193-195. http://d.old.wanfangdata.com.cn/Periodical/hgjz201002001
    [2] ZIELKE C W, STRUCK R T, EVANS J M, COSTANZA C P, GORIN E. Molten zinc halide catalysts for hydrocracking of coal extract and coal[J]. Ind Eng Chem Process Des Dev, 1966, 5(2):158-164. doi: 10.1021/i260018a009
    [3] CURRAN G P, STRUCK R T, GORIN E. Mechanism of hydrogen-transfer process to coal and coal extract[J]. Ind Eng Chem Process Des Dev, 1967, 6(2):166-173. doi: 10.1021/i260022a003
    [4] IKENAGA N, KAN-NAN S, SAKODA T, SUZUKI T. Coal hydroliquefaction using highly dispersed catalyst precursors[J]. Catal Today, 1997, 39(1/2):99-109. http://www.sciencedirect.com/science/article/pii/S0920586197000928
    [5] GODO M, SAITO M, ISHIHAVE A. Elucidation of coal liquefaction mechanisms using a tritiated molecular hydrogen in the presence and absence of H2S[J]. Fuel, 1998, 77(9/10):947-952. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0cd16ac2f4ab5001e9d718e5a37132ef
    [6] MCMILLEN D F, MALHOTRA R, HUM G P, CHANG S J. Hydrogen-transfer-promoted bond scission initiated by coal fragments[J]. Energy Fuels, 1987, 1(2):193-198. doi: 10.1021/ef00002a009
    [7] MCMILLEN D F, MALHOTRA R, CHANG S J, OGIER W C, NIGENDA S E. Mechanisms of hydrogen transfer and bond scission of strongly bonded coal structures in donor-solvent systems[J]. Fuel, 1987, 66(12):1611-1620. doi: 10.1016/0016-2361(87)90351-6
    [8] MALHOTRA R, MCMILLEN D F, TSE D S, LORENTS D C, RUOFF R S. Hydrogen-transfer reactions catalyzed by fullerenes[J]. Energy Fuels, 1993, 7(5):685-686. doi: 10.1021/ef00041a020
    [9] VERNON L W. Free radical chemistry of coal liquefaction:Role of molecular hydrogen[J]. Fuel, 1980, 59(2):102-106. doi: 10.1016/0016-2361(80)90049-6
    [10] ZONG Z M, WEI X Y. Effects of molecular hydrogen and hydrogen donor additives on 1, 2-di (1-naphthyl) ethane thermolysis[J]. Fuel Process Technol, 1994, 41(1):79-85. doi: 10.1016/0378-3820(94)90061-2
    [11] KUHLMANN E J, JUNG D Y, GUPTILL R P, DYKE C A, ZANG H K. Coal liquefaction using a hydrogenated creosote oil solvent:H-atom transfer from hydrogen donor components in the solvent[J]. Fuel, 1985, 64(11):1552-1557. doi: 10.1016/0016-2361(85)90372-2
    [12] DEPEYRE D, URHAN M, FLICOTEAUX C. Pyrolysis of hydrocarbon mixtures characteristic of coal:Application to dibenzyl mixture[J]. Fuel, 1985, 64(12):1655-1661. doi: 10.1016/0016-2361(85)90389-8
    [13] CRONAUER D C, SHAH Y T, RUBERTO R G. Mechanism and kinetics of selected hydrogen transfer reactions typical of coal Liquefaction[J]. Ind Eng Chem Process Des Dev, 1978, 17:281. doi: 10.1021/i260067a013
    [14] LI X, HU S X, JIN L, HU H Q. Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction[J]. Energy Fuels, 2008, 22(2):1126-1129. doi: 10.1021/ef7006062
    [15] 王建友.神华煤直接液化的催化加氢反应特性研究[D].大连: 大连理工大学, 2013: 81-85.

    WANG Jian-you. Characteristics of catalytic-hydrogenation in direct Shenhua coal liquefaction[D]. Dalian: Dalian University of Technology, 2013: 81-85.
    [16] 舒歌平.煤炭液化技术[M].北京:煤炭工业出版社, 2003:91-95.

    SHU Ge-ping. Direct Coal Liquefaction[M]. Beijing:Coal Industry Press, 2003:91-95.
    [17] 史士东.煤加氢液化工程学基础[M].北京:化学工业出版社, 2012:224-231.

    SHI Shi-dong. Engineering Fundamentals of Direct Coal Liquefaction[M]. Beijing:Chemical Industry Press, 2012:224-231.
    [18] KOTANIGAWA T, YOKOYAMA S, YAMAMOTO M, MAEKAWA Y. Catalytic activities of sulphate and sulphide in sulphur-promoted iron oxide catalyst for coal liquefaction[J]. Fuel, 1989, 68:618-621. doi: 10.1016/0016-2361(89)90161-0
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  36
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-12
  • 修回日期:  2018-08-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-12-10

目录

    /

    返回文章
    返回