留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧温度对Pt-FeOx/γ-Al2O3催化剂催化甲醛氧化性能的影响

崔维怡 王希越 谭乃迪

崔维怡, 王希越, 谭乃迪. 焙烧温度对Pt-FeOx/γ-Al2O3催化剂催化甲醛氧化性能的影响[J]. 燃料化学学报(中英文), 2019, 47(8): 964-972.
引用本文: 崔维怡, 王希越, 谭乃迪. 焙烧温度对Pt-FeOx/γ-Al2O3催化剂催化甲醛氧化性能的影响[J]. 燃料化学学报(中英文), 2019, 47(8): 964-972.
CUI Wei-yi, WANG Xi-yue, TAN Nai-di. Effect of calcination temperature on catalytic performance of Pt-FeOx/γ-Al2O3 catalysts for HCHO oxidation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 964-972.
Citation: CUI Wei-yi, WANG Xi-yue, TAN Nai-di. Effect of calcination temperature on catalytic performance of Pt-FeOx/γ-Al2O3 catalysts for HCHO oxidation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 964-972.

焙烧温度对Pt-FeOx/γ-Al2O3催化剂催化甲醛氧化性能的影响

基金项目: 

国家自然科学基金 51805207

吉林省教育厅‘十三五’科学技术研究规划项目 JJKA20180559KJ

吉林市科技创新发展计划项目 201750211

详细信息
  • 中图分类号: TQ426

Effect of calcination temperature on catalytic performance of Pt-FeOx/γ-Al2O3 catalysts for HCHO oxidation

Funds: 

the National Science Foundation of China 51805207

13th Five-Year Science and Technology Research and Planning Project of Education Department of Jilin province JJKA20180559KJ

Science and Technology Innovation Development Plan Project of Jilin 201750211

More Information
  • 摘要: 采用胶体沉积法制备了Pt-FeOx/γ-Al2O3催化剂,通过XRD、TEM、BET、XPS、H2-TPR和FT-IR等技术对催化剂进行了表征,考察了焙烧温度对Pt-FeOx/γ-Al2O3催化剂表面结构及其催化甲醛氧化性能的影响。结果表明,焙烧温度对Pt-FeOx/γ-Al2O3催化剂的氧化还原性能、Pt物种的化学状态以及表面羟基的数量有较大的影响。在室温下,所有Pt-FeOx/γ-Al2O3催化剂均表现出催化氧化活性,其中,200℃焙烧的Pt-FeOx/γ-Al2O3催化剂表现出最好的催化性能,可以将甲醛100%转化为CO2和H2O。较低温度焙烧的Pt-FeOx/γ-Al2O3催化剂表面Pt物种具有较好的价态分布以及更多的界面活性位,如Pt-O-Fe物种,因而在温和条件下对甲醛的催化氧化活性较高。
  • 图  1  催化剂性能评价流程示意图

    Figure  1  Schematic flow diagram of the catalytic performance testing

    1: H2; 2: N2; 3: O2; 4, 6: flowmeter; 5: HCHO; 7: three way valve; 8: reactor; 9: chromatography; 10: exhaust; 11: carrier gas; 12: offgas

    图  2  Pt/γ-Al2O3-200、Pt-FeOx/γ-Al2O3-t催化剂和γ-Al2O3载体的XRD谱图

    Figure  2  XRD patterns of the Pt/γ-Al2O3-200, Pt-FeOx/ Al2O3-t catalysts and γ-Al2O3 support

    a: γ-Al2O3; b: Pt/γ-Al2O3-200; c: Pt-FeOx/γ-Al2O3-200; d: Pt-FeOx/γ-Al2O3-300; e: Pt-FeOx/γ-Al2O3-400

    图  3  t/γ-Al2O3-200和Pt-FeOx/γ-Al2O3-t催化剂的HRTEM电镜照片((a)-(d), (f)),Pt-FeOx/γ-Al2O3-200催化剂的HAADF-STEM电镜照片(e)和EDX元素能量分布图(g)

    Figure  3  HRTEM ((a)-(d), (f)) of the Pt/γ-Al2O3-200 and Pt-FeOx/γ-Al2O3 -t catalyst, HAADF-STEM(e) and EDX mapping images(g) of the Pt-FeOx/γ-Al2O3-200 catalyst

    (a): Pt/γ-Al2O3-200; (b): Pt-FeOx/γ-Al2O3-200; (c): Pt-FeOx/γ-Al2O3-300; (d): Pt-FeOx/γ-Al2O3-400 (e): Pt-FeOx/γ-Al2O3-200; (f): Pt-FeOx/γ-Al2O3-200; (g): Pt-FeOx/γ-Al2O3-200

    图  4  Pt/γ-Al2O3-200、Pt-FeOx/γ-Al2O3-t催化剂和γ-Al2O3载体的甲醛催化氧化活性

    Figure  4  HCHO catalytic oxidation activities of the Pt/γ- Al2O3-200, Pt-FeOx/Al2O3-t catalysts and γ-Al2O3 support

    a: γ-Al2O3; b: Pt/γ-Al2O3-200; c: Pt-FeOx/γ-Al2O3-200; d: Pt-FeOx/γ-Al2O3-300; e: Pt-FeOx/γ-Al2O3-400 (reaction conditions: HCHO 375 mg/m3, φO2=20%, N2 balance, RH = 30%, GHSV: 60000 cm3/(g·h))

    图  5  Pt/γ-Al2O3-200、Pt-FeOx/Al2O3-t催化剂的Pt 4f的XPS谱图

    Figure  5  Pt 4f XPS spectra of the Pt/γ-Al2O3-200, Pt-FeOx/Al2O3-t catalysts

    (a): Pt/γ-Al2O3-200; (b): Pt-FeOx/γ-Al2O3-200; (c): Pt-FeOx/γ-Al2O3-300; (d): Pt-FeOx/γ-Al2O3-400

    图  6  Pt-FeOx/γ-Al2O3-t催化剂的Fe 2p XPS谱图

    Figure  6  Fe 2p XPS spectra of the Pt-FeOx/γ-Al2O3 catalysts calcined at various temperatures

    a: Pt-FeOx/γ-Al2O3-200; b: Pt-FeOx/γ-Al2O3-300; c: Pt-FeOx/γ-Al2O3-400

    图  7  Pt/γ-Al2O3-200、Pt-FeOx/γ-Al2O3-t催化剂和γ-Al2O3载体的Al 2p的XPS谱图

    Figure  7  Al 2p XPS spectra of Pt/γ-Al2O3-200, Pt-FeOx/γ-Al2O3-t catalyst and γ-Al2O3 support

    a: γ-Al2O3; b: Pt/γ-Al2O3-200; c: Pt-FeOx/γ-Al2O3-200; d: Pt-FeOx/γ-Al2O3-300; e: Pt-FeOx/γ-Al2O3-400

    图  8  Pt/γ-Al2O3-200、Pt-FeOx/γ-Al2O3-t催化剂和γ-Al2O3载体的O 1s的XPS谱图

    Figure  8  O 1s XPS spectra of the Pt/γ-Al2O3-200, Pt-FeOx/Al2O3-t catalysts and γ-Al2O3 support

    a: γ-Al2O3; b: Pt/γ-Al2O3-200; c: Pt-FeOx/γ-Al2O3-200; d: Pt-FeOx/γ-Al2O3-300; e: Pt-FeOx/γ-Al2O3-400

    图  9  Pt/γ-Al2O3-200、Pt-FeOx/γ-Al2O3-t催化剂和γ-Al2O3载体的FT-IR谱图

    Figure  9  FT-IR spectra of the Pt/γ-Al2O3-200, Pt-FeOx/ Al2O3-t catalysts and γ-Al2O3 support

    a: γ-Al2O3; b: Pt/γ-Al2O3-200; c: Pt-FeOx/γ-Al2O3-200; d: Pt-FeOx/γ-Al2O3-300; e: Pt-FeOx/γ-Al2O3-400

    图  10  Pt/γ-Al2O3-200、Pt-FeOx/γ-Al2O3-t催化剂和γ-Al2O3载体的H2-TPR谱图

    Figure  10  H2 -TPR profiles of the Pt/γ-Al2O3-200, Pt-FeOx/Al2O3-t catalysts and γ-Al2O3 support

    a: γ-Al2O3; b: Pt/γ-Al2O3-200; c: Pt-FeOx/γ-Al2O3-200; d: Pt-FeOx/γ-Al2O3-300; e: Pt-FeOx/γ-Al2O3-400

    表  1  Pt/γ-Al2O3-200、Pt-FeOx/γ-Al2O3-t催化剂和γ-Al2O3载体的物化性能

    Table  1  Physical properties of the Pt/γ-Al2O3-200, Pt-FeOx/Al2O3-t catalysts and γ-Al2O3 support

    Catalyst ABET/(m2·g-1) Pore volume v/(m3·g-1) Pore size d/nm
    γ-Al2O3 162 0.23 6.0
    Pt/γ-Al2O3-200 119 0.17 6.5
    Pt-FeOx/γ-Al2O3-200 113 0.17 6.6
    Pt-FeOx/γ-Al2O3-300 104 0.16 6.7
    Pt-FeOx/γ-Al2O3-400 98 0.14 6.9
    下载: 导出CSV

    表  2  Pt/γ-Al2O3-200、Pt-FeOx/γ-Al2O3-t催化剂以及γ-Al2O3载体的Pt 4d和O 1s XPS拟合

    Table  2  Pt 4d and O 1s XPS curve fitting results of Pt/γ- Al2O3-200, Pt-FeOx/Al2O3-t catalysts and γ-Al2O3 support

    Catalyst Pt2+/Pt 0 OII/(OI+ OII)
    γ-Al2O3 0.37
    Pt/γ-Al2O3-200 0.36 0.31
    Pt-FeOx/γ-Al2O3-200 0.39 0.31
    Pt-FeOx/γ-Al2O3-300 0.58 0.23
    Pt-FeOx/γ-Al2O3-400 1.33 0.18
    下载: 导出CSV
  • [1] SALTHAMMER T, MENTESE S, MARUTZKY R. Formaldehyde in the indoor environment[J]. Chem Rev, 2010, 110(4):2536-2572. doi: 10.1021/cr800399g
    [2] CHI C C, CHEN W D, GUO M, WENG M L, YAN G, SHEN X Y. Law and features of TVOC and formaldehyde pollution in urban indoor air[J]. Atmos Environ, 2016, 132(5):85-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1521901c1510a13ac0d0c9c6162c34fb
    [3] TANG X J, BAI Y, DUONG A, SMITH M T, LI L Y, ZHANG L P. Formaldehyde in China:Production, consumption, exposure levels, and health effects[J]. Environ Int, 2009, 35(8):1210-1224. doi: 10.1016/j.envint.2009.06.002
    [4] MARSH G M, YOUK A O. Reevaluation of mortality risks from nasopharyngeal cancer in the formaldehyde cohort study of the national cancer institute[J]. Regul Toxicol Pharmacol, 2004, 40(11):113-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7a3fdf4cc193217c05653b2e7b70f81d
    [5] HUANG H B, XU Y, FENG Q Y, LEUNG D Y C. Low temperature catalytic oxidation of volatile organic compounds:A review[J]. Catal Sci Technol, 2015, 5(2):2649-2669. http://www.mendeley.com/research/low-temperature-catalytic-oxidation-volatile-organic-compounds-review/
    [6] NIE L H, YU J G, JARONIEC M, TAO F. Room-temperature catalytic oxidation of formaldehyde on catalysts[J]. Catal Sci Technol, 2016, 6(11):3649-3669. doi: 10.1039/C6CY00062B
    [7] 拜冰阳, 乔琦, 李俊华, 郝吉明.甲醛催化氧化催化剂的研究进展[J].催化学报, 2016, 37(1):102-122. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201601013

    BAI Bing-yang, QIAO Qi, LI Jun-hua, HAO Ji-ming. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chin J Catal, 2016, 37(1):102-122. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201601013
    [8] ZHANG C B, LIU F D, ZHAI Y P, ARIGA H, YI N, LIU Y C, ASAKURA K, FLYTZANI-STEPHANOPOULOS M, HE H. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angew Chem Int Ed, 2012, 51(38):9628-9632. doi: 10.1002/anie.v51.38
    [9] XU Q L, LEI W Y, LI X Y, QI X Y, YU J G, LIU G, WANG J L, ZHANG P Y. Efficient removal of formaldehyde by nanosized gold on well-defined CeO2 nanorods at room temperature[J]. Environ Sci Technol, 2014, 48(16):9702-9708. doi: 10.1021/es5019477
    [10] LI Y B, ZHANG C B, HE H, ZHANG J H, CHEN M. Influence of alkali metals on Pd/TiO2 catalysts for catalytic oxidation of formaldehyde at room temperature[J]. Catal Sci Technol, 2016, 6(7):2289-2295. doi: 10.1039/C5CY01521A
    [11] MA L, WANG D S, LI J H, BAI B Y, FU L X, LI Y D. Ag/CeO2 nanospheres:Efficient catalysts for formaldehyde oxidation[J]. Appl Catal B:Environ, 2014, 148/149(7):36-43. http://www.sciencedirect.com/science/article/pii/S0926337313006644
    [12] WANG J L, LI J G, JIANG C J, ZHOU P, ZHANG P Y, YU J G. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air[J]. Appl Catal B:Environ, 2017, 204(5):147-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fb70db68f2265617d095cbbae17d7b14
    [13] XIA Y S, DAI H X, ZHANG L, DENG J G, HE H, AU C T. Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol[J]. Appl Catal B:Environ, 2010, 100(10):229-237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5314897f591d3c6b2316eedcef2668cf
    [14] WANG Z, WANG W Z, ZHANG L, JIANG D. Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature[J]. Catal Sci Technol, 2016, 6:3845-3853. doi: 10.1039/C5CY01709B
    [15] HUANG Y C, FAN W J, LONG B, LI H B. Alkali-modified non-precious metal 3D-NiCo2O4 nanosheets for efficient formaldehyde oxidation at low temperature[J]. J Mater Chem A, 2016, 4(10):3648-3654. doi: 10.1039/C5TA09370H
    [16] 崔维怡, 惠继星, 谭乃迪.负载型铂催化剂催化氧化甲醛的研究进展[J].化工进展, 2017, 36(10):3711-3719. http://d.old.wanfangdata.com.cn/Periodical/hgjz201710025

    CUI Wei-yi, HUI Ji-xing, TAN Nai-di. Research progress on catalytic oxidation of formaldehyde over supported platinum catalysts[J]. Chem Ind Eng Prog, 2017, 36(10):3711-3719. http://d.old.wanfangdata.com.cn/Periodical/hgjz201710025
    [17] GUO J H, LIN C X, JIANG C J, ZHANG P Y. Review on noble metal-based catalysts for formaldehyde oxidation at room temperature[J].Appl Surf Sci, 2019, 475:237-255. doi: 10.1016/j.apsusc.2018.12.238
    [18] AN N H, YU Q S, LIU G, LI S Y, JIA M J, ZHANG W X. Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method[J]. J Hazard Mater, 2011, 186(10):1392-1397. http://www.sciencedirect.com/science/article/pii/S0304389410015980
    [19] XU Z H, YU J G, JARONIEC M. Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt[J]. Appl Catal B:Environ, 2015, 163(2):306-312. http://d.old.wanfangdata.com.cn/Conference/9171952
    [20] YAN Z X, XU Z H, YU J G, JARONIEC M. Highly active mesoporous ferrihydrite supported Pt catalyst for formaldehyde removal at room temperature[J]. Environ Sci Technol, 2015, 49(11):6637-6644. doi: 10.1021/acs.est.5b00532
    [21] CUI W Y, YUAN X L, WU P, ZHENG B, ZHANG W X, JIA M J. Catalytic properties of Al2O3 supported Pt-FeOx catalysts for complete oxidation of formaldehyde at ambient temperature[J]. RSC Adv, 2015, 5(126):104330-104336. doi: 10.1039/C5RA19151C
    [22] 郑彬, 甘涛, 吴淑杰, 刘钢, 张文祥等. Pt-FeOx催化剂微结构对催化CO氧化性能的影响[J].无机化学学报, 2018, 34(6):1065-1070. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201806008

    ZHENG Bin, GAN Tao, WU Shu-jie, LIU Gang, ZHANG Wen-xiang. Influence of microstructure of Pt-FeOx catalyst on the catalytic CO oxidation[J]. Chin J Inorg Chem, 2018, 34(6):1065-1070. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201806008
    [23] QI L F, CHENG B, YU J G, HO W K. High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature[J]. J Hazard Mater, 2016, 301:522-530. doi: 10.1016/j.jhazmat.2015.09.026
    [24] CHEN G X, ZHAO Y, FU G, DUCHESNE P N, GU L, ZHENG Y P, WENG X F, CHEN M S, ZHANG P, PAO C W, LEE J F, ZHENG N F. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation[J]. Science, 2014, 344:495-499. doi: 10.1126/science.1252553
    [25] XU L S, ZHANG W H, ZHANG Y L, WU Z F, CHEN B H, JIANG Z Q, MA Y S, YANG J L, HUANG W X. Oxygen vacancy-controlled reactivity of hydroxyls on an FeO(111) monolayer film[J]. J Phys Chem C, 2011, 115(14):6815-6824. doi: 10.1021/jp200423j
    [26] ZHENG B, LIU G, GENG L L, CUI J Y, WU S J, WU P, JIA M J, YAN W F, ZHANG W X. Role of the FeOx support in constructing high-performance Pt/FeOx catalysts for low-temperature CO oxidation[J]. Catal Sci Technol, 2016, 6(5):1546-1554. doi: 10.1039/C5CY00840A
    [27] CHEN B B, ZHU X B, CROCKER M, WANG Y, SHI C. FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature[J]. Appl Catal B:Environ, 2014, 154-155:73-81. doi: 10.1016/j.apcatb.2014.02.009
    [28] JIA J F, SHEN J Y, LIN L W, XU Z S, ZHANG T, LIANG D B. A study on reduction behaviors of the supported platinum-iron catalysts[J]. J Mol Catal A:Chem, 1999, 138:177-184. doi: 10.1016/S1381-1169(98)00147-2
    [29] AN N H, DUCHESNE P N, LI S Y, WU P, ZHANG W L, LEE J F, CHENG S, ZHANG P, JIA M J, ZHANG W X. Size effects of platinum colloid particles on the structure and CO oxidation properties of supported Pt/Fe2O3 catalysts[J]. J Phys Chem C, 2013, 117:21254-21262. doi: 10.1021/jp404266p
    [30] AN N H, YUAN X L, PAN B, LI Q L, LI S Y, ZHANG W X. Design of a highly active Pt/Al2O3 catalyst for low-temperature CO oxidation[J]. RSC Adv, 2014, 4(72):38250-38257. doi: 10.1039/C4RA05646A
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  49
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-28
  • 修回日期:  2019-05-20
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-08-10

目录

    /

    返回文章
    返回