留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神府煤热解的结构变化及煤焦加氢反应性研究

张金刚 孙志刚 郭强 王兴军 于广锁 刘海峰 王辅臣

张金刚, 孙志刚, 郭强, 王兴军, 于广锁, 刘海峰, 王辅臣. 神府煤热解的结构变化及煤焦加氢反应性研究[J]. 燃料化学学报(中英文), 2017, 45(2): 129-137.
引用本文: 张金刚, 孙志刚, 郭强, 王兴军, 于广锁, 刘海峰, 王辅臣. 神府煤热解的结构变化及煤焦加氢反应性研究[J]. 燃料化学学报(中英文), 2017, 45(2): 129-137.
ZHANG Jin-gang, SUN Zhi-gang, GUO Qiang, WANG Xing-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Structural changes of Shenfu coal in pyrolysis and hydrogasification reactivity of the char[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 129-137.
Citation: ZHANG Jin-gang, SUN Zhi-gang, GUO Qiang, WANG Xing-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Structural changes of Shenfu coal in pyrolysis and hydrogasification reactivity of the char[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 129-137.

神府煤热解的结构变化及煤焦加氢反应性研究

基金项目: 

国家自然科学基金 21176078

详细信息
    通讯作者:

    王兴军,E-mail:wxj@ecust.edu.cn

  • 中图分类号: TQ541

Structural changes of Shenfu coal in pyrolysis and hydrogasification reactivity of the char

Funds: 

National Natural Science Foundation of China 21176078

More Information
  • 摘要: 将煤加氢过程分解为原煤热解和焦加氢两个过程,在固定床反应器内研究了煤热解和焦加氢反应。采用红外气体分析仪、拉曼光谱仪和X射线衍射仪,分析研究了煤热解过程中气体组分含量与煤焦微观结构变化的相互关系以及煤焦微观结构对其加氢反应特性的影响。结果表明,热解温度对煤焦的微观结构和加氢反应性有较大影响,400-800℃,随着温度升高,煤焦拉曼分峰面积比AD1/AGAD2/AGAD3/AGAD4/AG均上升,AG/AAll减小。800-900℃,AG/AAll增大,无序碳的相对含量增加,石墨化进程明显。煤焦的XRD分析与拉曼光谱分析结果一致。400-800℃,随着温度升高,煤焦中碳结构晶面间距d002先增加后减小,堆垛高度L002增加,晶面间距与堆垛高度比d002/L002减小,煤焦中石墨碳结构的含量增加。800-900℃,d002减小,L002明显增大。采用拉曼分峰比(aAD1/G+bAD2/G+cAD3/G+dAD4/G)与加氢反应性特征参数τ0.5进行线性拟合,得到代表碳微晶结构加氢反应性的拟合因子,且拟合因子越大,相应碳微晶的加氢反应性越好。
  • 图  1  固定床反应系统示意图

    Figure  1  Schematic diagram of the fixed-bed reactor system

    1: hydrogen cylinder; 2: high purity nitrogen cylinder; 3: inlet mass flow controller; 4: pressure gage; 5: feed hopper; 6: thermocouple; 7: double entanglements; 8: electric furnace; 9: outlet mass flow meter; 10: gas washing bottle; 11: gas drying bottle valve; 12: gas analyzer; 13: computer

    图  2  温度对神府煤热解产气总量的影响

    Figure  2  Effect of temperature on yields of gas production of SF coal pyrolysis

    图  3  煤焦的一级拉曼光谱及拟合曲线

    Figure  3  First-order Raman spectra and curves-fitted of chars

    图  4  不同温度神府煤焦的典型拉曼光谱谱图

    Figure  4  Typical first-order Raman spectra of SF char obtained at different temperatures

    图  5  拉曼分峰面积比随热解温度的变化

    Figure  5  Variation of fitted Raman area ratios with the pyrolysis temperature

    图  6  D1峰和G峰的半高宽

    Figure  6  FWHM of D1 and G band

    图  7  D1峰和G峰半宽高之比

    Figure  7  FWHM ratio of D1 and G band

    图  8  ( 002)和γ面网分峰拟合示意图

    Figure  8  Schematic of curve-fitted XRD spectrum of 002 band and γ band

    图  9  温度对煤焦加氢产品气收率的影响

    Figure  9  Effect of temperature on yields of gas production in char hydrogasification

    图  10  温度对煤焦加氢反应碳转化率的影响

    Figure  10  Effect of temperature on carbon conversion of SF char hydrogasification

    图  11  煤焦加氢反应性与拉曼峰面积比的关系

    Figure  11  Correlations between SF char hydrogasi fication reactivity and the band area ratios

    表  1  神府煤的工业分析与元素分析

    Table  1  Proximate analysis and ultimate analysis of SF coal

    Proximate analysis wad/% Ultimate analysis wd/%
    M A V FC C H N S
    3.02 8.28 36.28 52.42 71.94 3.197 0.94 0.43
    下载: 导出CSV

    表  2  神府煤的灰成分分析

    Table  2  Ash compositions analysis of SF coal

    Content w/%
    SiO2 Al2O3 CaO Fe2O3 K2O Na2O MgO
    31.99 12.47 25.46 7.24 0.459 2.36 1.51
    下载: 导出CSV

    表  3  炭材料的一级拉曼拟合峰及其振动模式

    Table  3  First-order Raman bands and vibration modes of carbon materials

    Band Raman shift σ/cm-1
    soot disordered graphite highly ordered graphite vibration mode
    G -1 580 -1 580 -1 580 ideal graphitic lattice (E2g-symmetry)
    D1 -1 350 -1 350 - disordered graphitic lattice (graphene layer edges,A1g symmetry)
    D2 -1 620 -1 620 - disordered graphitic lattice (surface graphene layers,E2g-symmetry)
    D3 -1 500 - - amorphous carbon
    D4 -1 200 - - disordered graphitic lattice,polyenes,ionic impurities
    下载: 导出CSV

    表  4  拟合峰位置及类型

    Table  4  Initial position and peak-fitted type

    Peak D1 D2 D3 D4 G
    Peak position σ/cm-1 1 350 1 620 1 500 1 200 1 580
    Peak-fitted type Lorentz Lorentz Gaussian Lorentz Lorentz
    下载: 导出CSV

    表  5  不同热处理温度后样品的( 002) 峰微晶结构参数

    Table  5  Crystallite parameters of samples after rapid-heat-treatment at different temperatures

    Pyrolysis temperature t/℃ θ002/(°) B002/(a.u.) d002/nm L002/nm d002/L002
    400 24.267 8.416 0.367 0.955 0.384
    500 24.293 8.284 0.366 0.970 0.377
    600 23.948 8.041 0.371 0.999 0.371
    700 23.756 8.021 0.374 1.001 0.373
    800 24.061 8.133 0.370 0.988 0.374
    900 25.149 6.141 0.354 1.311 0.270
    下载: 导出CSV
  • [1] 何选明. 煤化学第2版[M]. 北京:冶金工业出版社, 2010.

    HE Xuan-ming. Coal Chem[M]. Beijing:Metallurgical Industry Press, 2010.
    [2] 赵博, 杨永忠, 刘丽婷, 白斌, 张小庆, 王崇侠. 拉曼光谱技术在煤分析中的应用进展[J]. 洁净煤技术, 2015, 21(3):79-82. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201503022.htm

    ZHAO Bo, YANG Yong-zhong, LIU Li-ting, BAI Bin, ZHANG Xiao-qing, WANG Chong-xia. Application of raman spectroscopy in coal properties analysis[J].Clean Coal Technol, 2015, 21(3):79-82. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201503022.htm
    [3] SHENG C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15):2316-2324. doi: 10.1016/j.fuel.2007.01.029
    [4] LI X, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VⅢ. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006, 85(10):1518-1525.
    [5] SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005, 43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018
    [6] 范晓雷, 杨帆, 张薇, 周志杰, 王辅臣, 于遵宏. 热解过程中煤焦微晶结构变化及其对煤焦气化反应活性的影响[J]. 燃料化学学报, 2006, 34(4):395-398. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17035.shtml

    FAN Xiao-lei, YANG Fan, ZHANG Wei, ZHOU Zhi-jie, WANG Fu-chen, YU Zun-hong. Variation of the crystalline structure of coal char during pyrolysis and its effect on gasification reactivity[J]. J Fuel Chem Technol, 2006, 34(4):395-398. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17035.shtml
    [7] LIU X, ZHENG Y, LIU Z, DING H, HUANG X, ZHENG C. Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy[J]. Fuel, 2015, 157:97-106. doi: 10.1016/j.fuel.2015.04.025
    [8] 柳晓飞, 尤静林, 王媛媛, LU Li-ming, 解迎芳, 余立旺, 伏清. 澳大利亚烟煤热解的拉曼光谱研究[J]. 燃料化学学报, 2014, 42(3):270-276. doi: 10.1016/S1872-5813(14)60019-0

    LIU Xiao-fei, YOU Jing-lin, WANG Yuan-yuan, LU Li-ming, JIE Ying-fang, YU Li-wang, FU Qing. Raman spectroscopic study on the pyrolysis of Australian bituminous coal[J]. J Fuel Chem Technol, 2014, 42(3):270-276. doi: 10.1016/S1872-5813(14)60019-0
    [9] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J Chem Phy, 1970, 53(3):1126-1130. doi: 10.1063/1.1674108
    [10] 陈旺, 焦娜, 徐樑华, 曹维宇. 碳纤维在石墨化处理过程中的sp, 2结构转变[J]. 宇航材料工艺, 2013, 43(5):46-48.

    CHEN Wang, JIAO Na, XU Liang-hua, CAO Wei-yu. Transition of sp, 2 hybridization structure during graphitization of carbon fiber[J]. Aerosp Mater Technol, 2013, 43(5):46-48.
    [11] SFORNA M C, ZUILEN M A V, PHILIPPOT P. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia[J]. Geochim Cosmochim Acta, 2014, 124(1):18-33.
    [12] LI X J, HAYASGI J, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13):1700-1707.
    [13] 赵冰, 周志杰, 丁路, 于广锁. 快速热处理石油焦与煤的微观结构变化及气化活性分析[J]. 燃料化学学报, 2013, 41(1):40-45. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18098.shtml

    ZHAO Bing, ZHOU Zhi-jie, DING Lu, YU Guang-suo. Changes in the microstructure and gasification reactivity of petroleum coke and coal samples after rapid pyrolysis[J]. J Fuel Chem Technol, 2013, 41(1):40-45. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18098.shtml
    [14] 常海洲, 蔡雪梅, 李改仙, 白官, 吕秀清. 不同还原程度煤显微组分堆垛结构表征[J]. 山西大学学报:自然科学版, 2008, 31(2):223-227. http://www.cnki.com.cn/Article/CJFDTOTAL-SXDR200802024.htm

    CHANG Hai-zhou, CAI Xue-mei, LI Gai-xian, BAI Guan, LV Xiu-qing. Characterization for the stacking structure of coal macerals with different type reductivity[J]. J Shanxi Univ (Nat Sci Ed), 2008, 31(2):223-227. http://www.cnki.com.cn/Article/CJFDTOTAL-SXDR200802024.htm
    [15] LU L, VEENA SAHAJWALLA A, HARRIS D. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube Furnace[J]. Energy Fuels, 2000, 14(4):869-876. doi: 10.1021/ef990236s
    [16] 周军, 张海, 吕俊复, 岳光溪. 高温下热解温度对煤焦孔隙结构的影响[J]. 燃料化学学报, 2007, 35(2):155-159. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17121.shtml

    ZHOU Jun, ZHANG Hai, LV Jun-fu, YUE Guang-xi. Evolvement behavior of carbon minicrystal and pore structure of coal chars at high temperatures[J]. J Fuel Chem Technol, 2007, 35(2):155-159. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17121.shtml
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  95
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-17
  • 修回日期:  2016-11-22
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-02-10

目录

    /

    返回文章
    返回