留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZSM-5分子筛的合成及其在丁烯催化裂解反应中的应用

吴韬 袁桂梅 陈胜利 薛扬 李淑娟

吴韬, 袁桂梅, 陈胜利, 薛扬, 李淑娟. ZSM-5分子筛的合成及其在丁烯催化裂解反应中的应用[J]. 燃料化学学报(中英文), 2017, 45(2): 182-188.
引用本文: 吴韬, 袁桂梅, 陈胜利, 薛扬, 李淑娟. ZSM-5分子筛的合成及其在丁烯催化裂解反应中的应用[J]. 燃料化学学报(中英文), 2017, 45(2): 182-188.
WU Tao, YUAN Gui-mei, CHEN Sheng-li, XUE Yang, LI Shu-juan. Synthesis of ZSM-5 and its application in butylene catalytic cracking[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 182-188.
Citation: WU Tao, YUAN Gui-mei, CHEN Sheng-li, XUE Yang, LI Shu-juan. Synthesis of ZSM-5 and its application in butylene catalytic cracking[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 182-188.

ZSM-5分子筛的合成及其在丁烯催化裂解反应中的应用

详细信息
    通讯作者:

    袁桂梅,Te1:10-89733783,E-mail:mgyuan@cup.edu.cn

  • 中图分类号: O643

Synthesis of ZSM-5 and its application in butylene catalytic cracking

More Information
  • 摘要: 采用水热合成法制备了无模板剂ZSM-5分子筛并用正硅酸甲酯(TMOS)对其进行外表面修饰改性,利用XRD、SEM、29Si MAS NMR、27Al MAS NMR、NH3-TPD、BET和UV-vis DRS对合成分子筛的物相、形貌和酸性等进行了表征,并将其应用于催化丁烯裂解反应。研究表明,经水热合成的无模板剂ZSM-5结晶度较好,与添加模板剂合成的ZSM-5拥有相似的孔道结构和晶体结构以及相近的酸量,但在酸中心分布上有明显差异:孔道内酸中心数量增加且分布更加均匀,孔道交叉处酸中心数量减少;经过外表面修饰改性后,ZSM-5分子筛外表面部分不具备择形性的酸中心被钝化,使其择形选择能力增强。在催化丁烯裂解反应中,用TMOS进行外表面修饰改性的无模板剂ZSM-5分子筛作为催化剂能够有效抑制副反应的发生,丙烯和乙烯的总收率高达58%。
  • 图  1  分子筛的XRD谱图

    Figure  1  XRD patterns of zeolites

    图  2  分子筛的扫描电镜照片

    Figure  2  SEM images of catalysts

    (a): ZSM-5(T); (b): ZSM-5; (c): 0.15/ZSM-5

    图  3  分子筛的氮吸附-脱附等温线和孔径分布

    Figure  3  N2-adsorption/desorption isotherm and pore distribution of zeolites

    图  4  分子筛的 29Si MAS NMR、27Al MAS NMR固体核磁谱图

    Figure  4  29Si MAS NMR,27Al MAS NMR profiles of zeolites

    (a): 29Si MAS NMR; (b): 27Al MAS NMR

    图  5  分子筛的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of zeolites

    图  6  分子筛的紫外可见漫反射光谱谱图

    Figure  6  UV-vis diffuse reflection spectra of zeolites

    图  7  Co2+在分子筛孔道中三种存在位置

    Figure  7  Location site of Co2+ in the channel of zeolites

    图  8  丁烯转化率随反应时间的变化

    Figure  8  Evolution of the conversion as functions of TOS

    图  9  乙烯和丙烯总收率随反应时间的变化

    Figure  9  Evolution of total yield as a function of TOS

    图  10  氢转移指数随反应时间的变化

    Figure  10  Evolution of hydrogen transfer index as a function of TOS

    表  1  分子筛的相对结晶度

    Table  1  Relative crystallinity of zeolites

    Sample Relative crystallinity /%
    ZSM-5(T) 99.79
    ZSM-5 98.59
    0.05/ZSM-5 95.40
    0.10/ZSM-5 96.51
    0.15/ZSM-5 97.76
    下载: 导出CSV

    表  2  分子筛的物理性质

    Table  2  Physical properties of zeolites

    Sample Pore volume v/(cm3·g-1) Micropore volume v/(cm3·g-1) Surface area A/ (m2·g-1)
    ZSM-5(T) 0.192 0.058 307.6
    ZSM-5 0.188 0.051 303.5
    0.15/ZSM-5 0.187 0.054 297.6
    surface area: BET surface area; micropore volume: t-plot method
    下载: 导出CSV

    表  3  分子筛的总酸量

    Table  3  Acidic properties of zeolites

    Sample Total acid sites/(mmol·g-1)
    ZSM-5(T) 0.433 2
    ZSM-5 0.412 4
    0.15/ZSM-5 0.319 8
    下载: 导出CSV
  • [1] XUE N, CHEN X, NIE L, GUO X, DING W, CHEN Y, GU M, XIE Z. Understanding the enhancement of catalytic performance for olefin cracking:Hydrothermally stable acids in P/HZSM-5[J]. J Catal, 2007, 248(1):20-28. doi: 10.1016/j.jcat.2007.02.022
    [2] LIU D, CHOI W C, LEE C W, KANG N Y, LEE Y J, SHIN C H, PARK Y K. Steaming and washing effect of P/HZSM-5 in catalytic cracking of naphtha[J]. Catal Today, 2011, 164(1):154-157. doi: 10.1016/j.cattod.2010.10.091
    [3] TZOULAKI D, JENTYS A, PÉREZ-RAMÍREZ J, EGEBLAD K, LERCHER J A. On the location, strength and accessibility of Brönsted acid sites in hierarchical ZSM-5 particles[J]. Catal Today, 2012, 198(1):3-11. doi: 10.1016/j.cattod.2012.03.078
    [4] ZHU X, LIU S, SONG Y, XU L. Catalytic cracking of C4 alkenes to propene and ethene:Influences of zeolites pore structures and Si/Al2 ratios[J]. Appl Catal A:Gen, 2005, 288(1/2):134-142.
    [5] XUE N, NIE L, FANG D, GUO X, SHEN J, DING W, CHEN Y. Synergistic effects of tungsten and phosphorus on catalytic cracking of butene to propene over HZSM-5[J]. Appl Catal A:Gen, 2009, 352(1/2):87-94.
    [6] ZENG P, LIANG Y, JI S, SHEN B, LIU H, WANG B, ZHAO H, LI M. Preparation of phosphorus-modified PITQ-13 catalysts and their performance in 1-butene catalytic cracking[J]. J Energy Chem, 2014, 23(2):193-200. doi: 10.1016/S2095-4956(14)60135-2
    [7] CHEN C J, RANGARAJAN S, HILL I M, BHAN A. Kinetics and Thermochemistry of C4-C6 Olefin Cracking on HZSM-5[J]. ACS Catal, 2014, 4(7):2319-2327. doi: 10.1021/cs500119n
    [8] LI J, LI T, MA H, SUN Q, YING W, FANG D. Effect of impregnating Fe into P-modified HZSM-5 in the coupling cracking of butene and pentene[J]. Ind Eng Chem Res, 2015, 54(6):1796-17805. doi: 10.1021/ie504629p
    [9] LEE J, HONG U G, HWANG S, YOUN M H, SONG I K. Catalytic cracking of C5 raffinate to light olefins over lanthanum-containing phosphorous-modified porous ZSM-5:Effect of lanthanum content[J]. Fuel Process Technol, 2013, 109:189-195. doi: 10.1016/j.fuproc.2012.10.017
    [10] LI J, MA H, SUN Q, YING W, FANG D. Effect of iron and phosphorus on HZSM-5 in catalytic cracking of 1-butene[J]. Fuel Process Technol, 2014, 134:32-38.
    [11] GAO X, TANG Z, LU G, CAO G, LI D, TAN Z. Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication[J]. Solid State Sci, 2010, 12(7):1278-1282. doi: 10.1016/j.solidstatesciences.2010.04.020
    [12] XU R F, LIU J X, LIANG C C, JIA W H, LI F F, GUO H C. Effect of alkali metal ion modification on the catalytic performance of nano-HZSM-5 zeolite in butene cracking[J]. J Fuel Chem Technol, 2011, 39(6):449-454. doi: 10.1016/S1872-5813(11)60029-7
    [13] WAKUI K, SATOH K, SAWADA G, SHIOZAWA K, MATANO K, SUZUKI K, HAYAKAWA T, YOSHIMURA Y, MURATA K, MIZUKAMI F. Cracking of n, -butane over alkaline earth-containing HZSM-5 catalysts[J]. Catal Lett, 2002, 84(3/4):259-264. doi: 10.1023/A:1021448508130
    [14] XIAONING W, ZHEN Z, CHUNMING X, AIJUN D, LI Z, GUIYUAN J. Effects of light rare earth on acidity and catalytic performance of HZSM-5 zeolite for catalytic cracking of butane to light olefins[J]. J Rare Earth, 2007, 25(3):321-328. doi: 10.1016/S1002-0721(07)60430-X
    [15] XUE N, LIU N, NIE L, YU Y, GU M, PENG L, GUO X, DING W. 1-Butene cracking to propene over P/HZSM-5:Effect of lanthanum[J]. J Mol Catal A:Chem, 2010, 327(1/2):12-19.
    [16] WEBER R W, M LLER K P, UNGER M, O'CONNOR C T. The chemical vapour and liquid deposition of tetraethoxysilane on the external surface of ZSM-5[J]. Microporous Mesoporous Mater, 1998, 23(3/4):179-187.
    [17] WEBER R W, M LLER K P, O'CONNOR C T. The chemical vapour and liquid deposition of tetraethoxysilane on ZSM-5, mordenite and beta[J]. Microporous Mesoporous Mater, 2000, 35-36(0):533-543.
    [18] ZHU Z, XIE Z, CHEN Q, KONG D, LI W, YANG W, LI C. Chemical liquid deposition with polysiloxane of ZSM-5 and its effect on acidity and catalytic properties[J]. Microporous Mesoporous Mater, 2007, 101(1/2):169-175.
    [19] 李淑娟, 袁桂梅, 薛扬, 吴韬, 陈胜利, 王桂敏. 硅源对 ZSM-5 分子筛合成和催化性能的影响[J]. 工业催化, 2014, 22(12):915-921. http://www.cnki.com.cn/Article/CJFDTOTAL-GYCH201412007.htm

    LI Shu-juan, YUAN Gui-mei, XUE Yang, WU Tao, CHEN Sheng-li, WANG Gui-min. Effects of silicon sources on synthesis and catalytic properties of ZSM-5 zeolites[J]. Ind Catal, 2014, 22(12):915-921. http://www.cnki.com.cn/Article/CJFDTOTAL-GYCH201412007.htm
    [20] 薛扬, 袁桂梅, 陈胜利, 李淑娟, 袁锐. ZSM-5 分子筛的磷改性及其碳四烯烃催化裂解性能[J]. 工业催化, 2014, 22(5):357-362. http://www.cnki.com.cn/Article/CJFDTOTAL-GYCH201405008.htm

    XUE Yang, YUAN Gui-mei, CHEN Sheng-li, LI Shu-juan, YUAN Rui. Phosphorus modified ZSM-5 molecular sieves and their catalytic performance for the cracking of butylenes[J]. Ind Catal, 2014, 22(5):357-362. http://www.cnki.com.cn/Article/CJFDTOTAL-GYCH201405008.htm
    [21] DING W, MEITZNER G D, IGLESIA E. The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H-ZSM5[J]. J Catal, 2002, 206(1):14-22. doi: 10.1006/jcat.2001.3457
    [22] RURREN X, WENRQIN P, JIRHONG Y. Chemistry C Zeolites and Porous Materials[M]. Beijing:Science Press, 2004.
    [23] KLINOWSKI J. Solid-state NMR studies of molecular sieve catalysts[J]. Chem Rev, 1991, 91(7):1459-1479. doi: 10.1021/cr00007a010
    [24] SAZAMA P, DĚDEČEK J, G BOV V, WICHTERLOV B, SPOTO G, BORDIGA S. Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene[J]. J Catal, 2008, 254(2):180-189. doi: 10.1016/j.jcat.2007.12.005
    [25] DĚDEČEK J, KAUCK D, WICHTERLOV B. Al distribution in ZSM-5 zeolites:An experimental study[J]. Chem Commun, 2001, 11:970-971.
    [26] DĚDEČEK J, KAUCK D, WICHTERLOV B. Co2+ ion siting in pentasil-containing zeolites, part 3:Co2+ ion sites and their occupation in ZSM-5:A VIS diffuse reflectance spectroscopy study[J]. Microporous Mesoporous Mater, 2000, 35-36(0):483-494.
    [27] DEDECEK J, KAUCKY D, WICHTERLOVA B, GONSIOROVA O. Co2+ ions as probes of Al distribution in the framework of zeolites. ZSM-5 study[J]. Phys Chem Chem Phys, 2002, 4(21):5406-5413. doi: 10.1039/B203966B
    [28] DĚDEČEK J, ČAPEK L, KAUCK D, SOBALÍK Z, WICHTERLOV B. Siting and distribution of the Co ions in beta zeolite:A UV-Vis-NIR and FTIR Study[J]. J Catal, 2002, 211(1):198-207. doi: 10.1016/S0021-9517(02)93697-3
    [29] YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J N, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J Phys Chem C, 2015, 119(27):15303-15315. doi: 10.1021/acs.jpcc.5b03289
    [30] IWASE Y, SAKAMOTO Y, SHIGA A, MIYAJI A, MOTOKURA K, KOYAMA T R, BABA T. Shape-selective catalysis determined by the volume of a zeolite cavity and the reaction mechanism for propylene production by the conversion of butene using a proton-exchanged zeolite[J]. J Phys Chem C, 2012, 116(8):5182-5196. doi: 10.1021/jp212549j
    [31] KOYAMA T R, HAYASHI Y, HORIE H, KAWAUCHI S, MATSUMOTO A, IWASE Y, SAKAMOTO Y, MIYAJI A, MOTOKURA K, BABA T. Key role of the pore volume of zeolite for selective production of propylene from olefins[J]. Phys Chem Chem Phys, 2010, 12(11):2541-2554. doi: 10.1039/b921927g
    [32] SMIT B, MAESEN T L. Towards a molecular understanding of shape selectivity[J]. Nature, 2008, 451(7179):671-678. doi: 10.1038/nature06552
    [33] INAGAKI S, SHINODA S, KANEKO Y, TAKECHI K, KOMATSU R, TSUBOI Y, YAMAZAKI H, KONDO J N, KUBOTA Y. Facile fabrication of ZSM-5 zeolite catalyst with High Durability to coke formation during catalytic cracking of paraffins[J]. ACS Catal, 2013, 3(1):74-78. doi: 10.1021/cs300426k
    [34] URATA K, FURUKAWA S, KOMATSU T. Location of coke on HZSM-5 zeolite formed in the cracking of n-hexane[J]. Appl Catal A:Gen, 2014, 475:335-340. doi: 10.1016/j.apcata.2014.01.050
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  62
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-12
  • 修回日期:  2016-12-07
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-02-10

目录

    /

    返回文章
    返回