留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宁东煤煤焦-CO2气化反应特性的原位研究

张新沙 宋旭东 苏暐光 卫俊涛 白永辉 于广锁

张新沙, 宋旭东, 苏暐光, 卫俊涛, 白永辉, 于广锁. 宁东煤煤焦-CO2气化反应特性的原位研究[J]. 燃料化学学报(中英文), 2019, 47(4): 385-392.
引用本文: 张新沙, 宋旭东, 苏暐光, 卫俊涛, 白永辉, 于广锁. 宁东煤煤焦-CO2气化反应特性的原位研究[J]. 燃料化学学报(中英文), 2019, 47(4): 385-392.
ZHANG Xin-sha, SONG Xu-dong, SU Wei-guang, WEI Jun-tao, BAI Yong-hui, YU Guang-suo. In-situ study on gasification reaction characteristics of Ningdong coal chars with CO2[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 385-392.
Citation: ZHANG Xin-sha, SONG Xu-dong, SU Wei-guang, WEI Jun-tao, BAI Yong-hui, YU Guang-suo. In-situ study on gasification reaction characteristics of Ningdong coal chars with CO2[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 385-392.

宁东煤煤焦-CO2气化反应特性的原位研究

基金项目: 

国家自然科学基金 21878093

详细信息
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 中图分类号: TQ546

In-situ study on gasification reaction characteristics of Ningdong coal chars with CO2

Funds: 

the National Natural Science Foundation of China 21878093

More Information
  • 摘要: 以典型宁东煤-梅花井烟煤和羊场湾烟煤焦为气化样品,并与典型气化用煤-神府烟煤焦对比,采用热重分析仪及高温热台-光学显微镜联用系统原位研究煤焦气化反应活性,并结合焦样理化结构特性的系统表征对其进行关联解释。结果表明,在相同气化温度下,三种煤焦的气化反应活性大小顺序为:羊场湾烟煤焦>梅花井烟煤焦>神府烟煤焦。由高温热台实验原位研究可知,随着煤焦-CO2反应的进行,大部分煤焦颗粒反应形式以颗粒收缩进行,到达反应中后期,反应由颗粒收缩转变为缩芯形式,并通过投射面积收缩率可发现,相同反应时间下,羊场湾烟煤焦的投射面积收缩率最大,其后依次为梅花井烟煤焦和神府烟煤焦。气化反应活性的差异主要归因于不同煤焦理化性质间的差异:羊场湾烟煤焦的比表面积、炭结构无序化程度和K、Na、Ca总含量最大,其后依次为梅花井烟煤焦和神府烟煤焦。
    1)  本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 图  1  高温热台显微镜结构原理示意图

    Figure  1  Schematic diagram of in-situ heating stage microscope

    图  2  焦样的电镜照片

    Figure  2  Scanning electron microscope images of chars samples

    图  3  焦样气化反应特性曲线

    Figure  3  Gasification reaction characteristics curves of char samples

    图  4  基于原位高温热台显微镜的SF-1000P CO2气化反应过程固体结构演变

    Figure  4  Solid structure evolution during SF-1000P CO2 gasification recorded by the in-situ heating stage microscope

    (note: SF-950 ℃-N2 represents heating to 950 ℃ under N2 atmosphere; SF-950 ℃-CO2-1 min represents 1 min of isothermal gasification under CO2 atmosphere and 950 ℃, and so on; the values of length, width and area are the average of 3 particles)

    图  5  基于原位高温热台显微镜的MHJ-1000PCO2气化反应过程固体结构演变

    Figure  5  Solid structure evolution during MHJ-1000P CO2 gasification recorded by the in-situ heating stage microscope

    图  6  基于原位高温热台显微镜的YCW-1000P CO2气化反应过程固体结构演变

    Figure  6  Solid structure evolution during YCW-1000P CO2 gasification recorded by the in-situ heating stage microscope

    图  7  焦样在原位热台气化过程中的投射面积收缩率

    Figure  7  Shrinkage ratio of the particle projected area during char gasification in the in-situ heating stage microscope

    表  1  实验样品的基础分析数据

    Table  1  Basic properties of samples

    Sample Proximate analysis wd/% Ultimate analysis wd/% Ash fusion temperature t/℃
    V FC A C H N S O* DT ST HT FT
    MHJ 27.87 50.48 21.65 54.71 3.14 0.64 1.32 18.54 1167 1201 1209 1230
    YCW 26.64 56.81 16.55 64.42 3.63 0.67 1.14 13.59 1183 1201 1207 1213
    SF 29.51 61.92 8.57 73.01 4.18 0.85 0.53 12.86 1161 1175 1187 1198
    note: V: volatile matter; FC: fixed carbon; d: dry basis; *: calculated by difference; DT: deformation temperature;
    ST: softening temperature; HT: hemispherical temperature; FT: flow temperature
    下载: 导出CSV

    表  2  实验样品的灰化学组成

    Table  2  Ash chemical compositions of samples

    Sample Composition w/%
    SiO2 Al2O3 Fe2O3 CaO Na2O K2O MgO
    MHJ 51.34 22.53 8.01 5.18 1.20 1.97 4.11
    YCW 41.59 18.28 9.27 12.25 2.19 1.51 4.77
    SF 45.06 19.19 9.06 13.87 2.09 0.90 0.96
    下载: 导出CSV

    表  3  焦样孔结构参数

    Table  3  Pore structure parameters of char samples

    Sample ABET/(m2·g-1)
    SF-1000P 3.16
    MHJ-1000P 4.53
    YCW-1000P 6.15
    下载: 导出CSV

    表  4  焦样拉曼光谱峰面积比

    Table  4  Raman band area ratio of char samples

    Sample ID1/IG IG/IAll ID3/IG+D2+D3
    SF-1000P 4.903 0.120 0.470
    MHJ-1000P 5.735 0.109 0.489
    YCW-1000P 6.479 0.095 0.512
    下载: 导出CSV

    表  5  焦样的元素组成

    Table  5  Element composition of char samples

    Sample Content w/%
    K Na Ca
    SF-1000P 0.16 0.17 1.50
    MHJ-1000P 0.58 0.19 1.55
    YCW-1000P 0.40 0.30 1.90
    下载: 导出CSV

    表  6  焦样气化反应活性指数

    Table  6  Gasification reactivity index of char samples

    Sample R0.5/min-1
    800 ℃ 850 ℃ 900 ℃ 950 ℃
    SF-1000P 0.002 0.005 0.015 0.036
    MHJ-1000P 0.003 0.011 0.027 0.060
    YCW-1000P 0.004 0.012 0.036 0.081
    下载: 导出CSV
  • [1] KIM Y T, SEO D K, HWANG J. Study of the effect of coal type and particle size on char -CO2 gasification via gas analysis[J]. Energy Fuels, 2011, 25(11):5044-5054. doi: 10.1021/ef200745x
    [2] DUMAN G, UDDIN M A, YANIK J. The effect of char properties on gasification reactivity[J]. Fuel Process Technol, 2014, 118(2):75-81. http://cn.bing.com/academic/profile?id=dad603cfc3f7e08da3748d5ce8b7e8a6&encoded=0&v=paper_preview&mkt=zh-cn
    [3] MANI T, MAHINPEY N, MURUGAN P. Reaction kinetics and mass transfer studies of biomass char gasification with CO2[J]. Chem Eng Sci, 2011, 66(1):36-41. doi: 10.1016/j.ces.2010.09.033
    [4] TREMEL A, SPLIETHOFF H. Gasification kinetics during entrained flow gasification -part Ⅱ:Intrinsic char reaction rate and surface area development[J]. Fuel, 2013, 107(9):653-661. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229718456/
    [5] 陈彦, 张济宇. Na2CO3催化剂对福建高变质无烟煤比表面及气化反应特性的影响[J].化工学报, 2011, 62(10):2768-2775. doi: 10.3969/j.issn.0438-1157.2011.10.014

    CHEN Yan, ZHANG Ji-yu. Effect of biomass ash addition on gasification characteristics of anthracite coal char[J]. CIESC J, 2011, 62(10):2768-2775. doi: 10.3969/j.issn.0438-1157.2011.10.014
    [6] 许修强, 王永刚, 陈国鹏, 陈宗定, 秦中宇, 戴谨泽, 张书, 许德平.水蒸气对褐煤原位气化半焦反应性能及微观结构的影响[J].燃料化学学报, 2015, 43(5):546-553. doi: 10.3969/j.issn.0253-2409.2015.05.005

    XU Xiu-qiang, WANG Yong-gang, CHEN Guo-peng, CHEN Zong-ding, QIN Zhong-yu, DAI Jin-ze, ZHANG Shu, XU De-ping. Evolution behavior of reactivity and microstructure of lignite char during in-situ gasification with steam[J]. J Fuel Chem Technol, 2015, 43(5):546-553. doi: 10.3969/j.issn.0253-2409.2015.05.005
    [7] LIU X, XIONG B, HUANG X, DING H, ZHENG Y, LIU Z, ZHENG C. Effect of catalysts on char structural evolution during hydrogasification under high pressure[J]. Fuel, 2017, 188:474-482. doi: 10.1016/j.fuel.2016.10.053
    [8] CETIN E, MOGHTADERI B, GUPTA R, WALL T F. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel, 2004, 83:2139-2150. doi: 10.1016/j.fuel.2004.05.008
    [9] 李昌伦, 王永刚, 林雄超, 田震, 武欣, 杨远平, 张海永, 许德平.内在矿物对高灰褐煤CO2气化的影响研究[J].燃料化学学报, 2017, 45(7):780-788. doi: 10.3969/j.issn.0253-2409.2017.07.002

    LI Chang-lun, WANG Yong-gang, LIN Xiong-chao, TIAN Zhen, WU Xin, YANG YUAN-ping, ZHANG Hai-yong, XU De-ping. Influence of inherent minerals on CO2 gasification of a lignite with high ash content[J]. J Fuel Chem Technol, 2017, 45(7):780-788. doi: 10.3969/j.issn.0253-2409.2017.07.002
    [10] 何清, 卫俊涛, 龚岩, 丁路, 于广锁.神府烟煤焦与城市固体废弃物水热炭焦共气化反应特性的实验研究[J].燃料化学学报, 2017, 45(10):1191-1199. doi: 10.3969/j.issn.0253-2409.2017.10.006

    HE Qing, WEI Jun-tao, GONG Yan, DING Lu, YU Guang-suo. Experimental study on co-gasification reactivity of Shenfu bituminous coal char and MSW-based hydrochar[J]. J Fuel Chem Technol, 2017, 45(10):1191-1199. doi: 10.3969/j.issn.0253-2409.2017.10.006
    [11] TAKAYUKI T, TAMAI Y, TOMITA A. Reactivities of 34 coals under steam gasification[J]. Fuel, 1985, 64(10):1438-1442. doi: 10.1016/0016-2361(85)90347-3
    [12] 竹怀礼.煤的催化气化及基于原位拉曼光谱的煤焦结构演变研究[D].上海: 华东理工大学, 2017.

    ZHU Huai-li. Research on characteristics of catalytic gasification and the evolution of coal char structure based on in-situ Raman spectroscopy[D]. Shanghai: East China University of Science & Technology, 2017.
    [13] ZHANG Y, ASHIZAWA M, KAJITANI S, MIURA K. Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars[J]. Fuel, 2008, 87(4/5):475-481. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f8e50bea9f8a4c777ba51385e77950ff
    [14] YIP K, TIAN F, HAYASHI J, WU H. Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification[J]. Energy Fuels, 2009, 24(1):173-181. http://cn.bing.com/academic/profile?id=96a83d1b65479c6bed00389b11c61748&encoded=0&v=paper_preview&mkt=zh-cn
    [15] 丁路.煤的热解特性及基于可视化技术的气化反应机理研究[D].上海: 华东理工大学, 2016.

    DING Lu. Research on pyrolysis characteristics and gasification mechanism of coal based on visual technology[D]. Shanghai: East China University of Science & Technology, 2016.
    [16] LIU L, CAO Y, LIU Q. Kinetics studies and structure characteristics of coal char under pressurized CO2 gasification conditions[J]. Fuel, 2015, 146:103-110. doi: 10.1016/j.fuel.2015.01.002
    [17] FENG B, BHATIA S K. Variation of the pore structure of coal chars during gasification[J]. Carbon, 2003, 41:507-523. doi: 10.1016/S0008-6223(02)00357-3
    [18] ASADULLAH M, ZHANG S, MIN Z, YIMSIRI P, LI C. Effects of biomass char structure on its gasification reactivity[J]. Bioresour Technol, 2010, 101(20):7935-7943. doi: 10.1016/j.biortech.2010.05.048
    [19] JEONG H J, PARK S S, HWANG J. Co-gasification of coal-biomass blended char with CO2 at temperatures of 900-1100℃[J]. Fuel, 2014, 116:465-470. doi: 10.1016/j.fuel.2013.08.015
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  89
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-12
  • 修回日期:  2019-01-29
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-04-10

目录

    /

    返回文章
    返回