留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响

刘玉娟 王东哲 张磊 王宏浩 陈琳 刘道胜 韩蛟 张财顺

刘玉娟, 王东哲, 张磊, 王宏浩, 陈琳, 刘道胜, 韩蛟, 张财顺. 载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 燃料化学学报(中英文), 2018, 46(8): 992-999.
引用本文: 刘玉娟, 王东哲, 张磊, 王宏浩, 陈琳, 刘道胜, 韩蛟, 张财顺. 载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 燃料化学学报(中英文), 2018, 46(8): 992-999.
LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 992-999.
Citation: LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 992-999.

载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响

基金项目: 

国家自然科学基金 21671092

国家自然科学基金 21376237

辽宁省博士科研启动基金 2016013022

详细信息
  • 中图分类号: O643

Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming

Funds: 

the National Natural Science Foundation of China 21671092

the National Natural Science Foundation of China 21376237

the Doctoral Scientific Research Foundation of Liaoning Province 2016013022

More Information
  • 摘要: 采用沉淀法和浸渍法制备了具有氧空位的CeO2纳米材料和甲醇水蒸气重整制氢CuO/CeO2催化剂, 探索不同焙烧气氛对CeO2纳米材料结构、性质和甲醇水蒸气重整制氢性能的影响。采用SEM、XRD、BET、H2-TPR、N2O滴定和XPS等手段对催化剂进行了表征。结果表明, CuO/CeO2催化剂的催化活性与催化剂的Cu比表面积大小、Cu-Ce的相互作用强弱、表面缺陷和表面氧空位的多少有关。其中, 在氢气气氛下焙烧所得的CeO2负载CuO后的CuO/CeO2-H催化剂催化活性最佳。在反应温度为250℃, 水醇物质的量比为1.2时, 甲醇气体空速为800 h-1, 甲醇转化率达到了100%, 重整尾气中CO含量为0.87%。
  • 图  1  CeO2的SEM照片

    (a):CeO2-H; (b):CeO2-N; (c):CeO2-A

    Figure  1  SEM images of CeO2

    图  2  CeO2-X和CuO/CeO2-X催化剂的XRD谱图

    a:CeO2-H; b:CeO2-N; c:CeO2-A;
    d:CuO/CeO2-H; e:CuO/CeO2-N; f:CuO/CeO2-A

    Figure  2  XRD patterns of CeO2-X and CuO/CeO2-X

    图  3  催化剂CuO/CeO2-X的H2-TPR谱图

    a:CuO/CeO2-H; b:CuO/CeO2-N;c:CuO/CeO2-A

    Figure  3  H2-TPR profiles of the CuO/CeO2-X catalysts

    图  4  CuO/CeO2-X催化剂的Cu 2p XPS谱图(a)和Cu俄歇谱图(b)

    a:CuO/CeO2-H; b:CuO/CeO2-N; c:CuO/CeO2-A

    Figure  4  XPS spectra of Cu 2p binding energy region (a) and Auger spectra of Cu LMM (b) obtained from CuO/CeO2-X catalysts

    图  5  CuO/CeO2催化剂Ce 3d的XPS谱图

    a:CuO/CeO2-H; b:CuO/CeO2-N; c:CuO/CeO2-A

    Figure  5  XPS spectra of Ce 3d binding energy region obtained from CuO/CeO2 catalysts

    图  6  CuO/CeO2催化剂O 1s的XPS谱图

    a:CuO/CeO2-H; b:CuO/CeO2-N; c:CuO/CeO2-A

    Figure  6  XPS spectra of O 1s binding energy region obtained from CuO/CeO2 catalysts

    图  7  反应温度对甲醇转化率的影响

    (reaction conditions:W/M(molar ratio)=1.2,
    GHSV=800 h-1, no carrier gas)

    Figure  7  Methanol conversion as a function of the reaction temperature

    图  8  反应温度对产物中CO摩尔含量的影响

    (reaction conditions:W/M(molar ratio)= 1.2,
    GHSV = 800 h-1, no carrier gas)

    Figure  8  CO molar concentration in offgas as a function of the reaction temperature

    表  1  催化剂的物化性质和产氢速率

    Table  1  Physical characteristics of the prepared catalysts and hydrogen production rate in methanol steam reforming

    Catalyst ABET/ (m2·g-1) Pore volume v/ (cm3·g-1) dCuOa/nm Cu dispersion/% Cu surface area A/ (m2·g-1) YH2b/ (μmol·kg-1 ·s-1)
    CeO2-H 54.8 0.25 - - - -
    CeO2-N 62.8 0.23 - - - -
    CeO2-A 37.4 0.10 - - - -
    CuO/CeO2-H 52.0 0.23 23.4 17.29 10.0 18008.9
    CuO/CeO2-N 56.9 0.22 26.4 15.87 9.2 16897.3
    CuO/CeO2-A 21.9 0.09 29.9 15.33 8.8 11322.3
    a:the CuO average crystal size was calculated from CuO 2θ=38.7°; b:H2 production was calculated when temperature is 240 ℃, W/M(molar ratio)=1.2, GHSV=800 h-1
    下载: 导出CSV

    表  2  Cu LMM俄歇谱, Ce 3d XPS谱图以及表面Cu含量

    Table  2  Results of Auger of Cu LMM, XPS of Ce 3d, and surface Cu content of the catalysts

    Catalyst Cu+/%a Ce3+/%b Cu/(Cu+Ce)
    CuO/CeO2-H 54.7 22.08 0.23
    CuO/CeO2-N 54.5 18.76 0.22
    CuO/CeO2-A 43.9 18.50 0.19
    a:the surface Cu+ content determined according to the Auger of Cu LMM result; b:the surface Ce3+ content determined according to the XPS of Ce 3d result
    下载: 导出CSV
  • [1] AGRELL J, BIRGERSSON H, BOUTONNET M, MELIAN-CABRERA I, NAVARRO R M, FIERRO J L G.Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2, and Al2O3[J].J Catal, 2003, 219(2):389-403. doi: 10.1016/S0021-9517(03)00221-5
    [2] GU X K, LI W X.First-principles study on the origin of the different selectivities for methanol steam reforming on Cu(111) and Pd(111)[J].J Phys Chem C, 2010, 114(49):43-43. doi: 10.1021/jp107678d
    [3] TROVARELLI A.Catalytic properties of ceria and CeO-containing materials[J].Catal Rev, 1996, 38(4):439-520. doi: 10.1080/01614949608006464
    [4] VALDES-SOLI T, MARBAN G, FUERTES A B.Nanosized catalysts for the production of hydrogen by methanol steam reforming[J].Catal Today, 2006, 116(3):354-360. doi: 10.1016/j.cattod.2006.05.063
    [5] YANG S C, SU W N, LIN S D, RICK J, HWANG B J.Preparation of highly dispersed catalytic Cu from rod-like CuO-CeO2 mixed metal oxides:Suitable for applications in high performance methanol steam reforming[J].Catal Sci Technol, 2012, 2(4):807-812. doi: 10.1039/c2cy00330a
    [6] ZHOU J J, ZHANG Y, WU G S, MAO D S, LU G Z.Influence of the component interaction over Cu/ZrO2 catalysts induced with fractionated precipitation method on the catalytic performance for methanol steam reforming[J].RSC Adv, 2016, 6(36):30176-30183. doi: 10.1039/C5RA24163D
    [7] LAN H, ZHOU G L, LUO C J, YU Y R, XIE H M, ZHANG G Z.High efficiency CeCu composite oxide catalysts improved via preparation methods for propyl acetate catalytic combustion in air[J].Int J Chem React Eng, 2016, 14(3):757-768. https://www.deepdyve.com/lp/de-gruyter/high-efficiency-cecu-composite-oxide-catalysts-improved-via-QWhZ1ritOx
    [8] LI C C, LIN R J, LIN H P, LIN Y K, LIN Y G, CHANG C C, CHEN L C, CHEN K H.Catalytic performance of plate-type Cu/Fe nanocomposites on ZnO nanorods for oxidative steam reforming of methanol[J].Chem Commun, 2011, 47(5):1473-1475. doi: 10.1039/C0CC02918A
    [9] LANDI G, BARBATO P S, BENEDETTO A D, LISI L.Optimization of the preparation method of CuO/CeO2, structured catalytic monolith for CO preferential oxidation in H2-rich streams[J].Appl Catal B:Environ, 2016, 181(8):727-737.
    [10] LIU X, MEN Y, WANG J G, HE R, WANG Y Q.Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming[J].J Power Sources, 2017, 364:341-350. doi: 10.1016/j.jpowsour.2017.08.043
    [11] JIRATOVA K, KOVANDA F, BALABANOVA J, KOLOUSEK D, KLEGOVA A, PACULTOVA K, OBALOVA L.Cobalt oxide catalysts supported on CeO2-TiO2, for ethanol oxidation and N2O decomposition[J].React Kinet Mech Catal, 2017, 121(1):121-139. doi: 10.1007/s11144-017-1142-x
    [12] ZAIBILSKIY M, DJINOVIC P, TCHERNYCHOVA E, TKACHENKO O P, KUSTOV L M, PINTAR A.Nanoshaped CuO/CeO2 materials:Effect of the exposed ceria surfaces on catalytic sctivity in N2O decomposition reaction[J].ACS Catal, 2015, 5(9):5357-5365. doi: 10.1021/acscatal.5b01044
    [13] ZHOU X H, LI L, LI Z H, FAN L L, KANG W M, CHENG B W.The preparation of continuous CeO2/CuO/Al2O3, ultrafine fibers by electro-blowing spinning (EBS) and its photocatalytic activity[J].J Mater Sci:Mater Electron, 2017, 28(1):1-11. doi: 10.1007/s10854-016-5486-1
    [14] SURESH R, POMMUSWAMY V, MARIAPPAN R.Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2, nanoparticles by chemical precipitation method[J].Appl Surf Sci, 2013, 273:457-464. doi: 10.1016/j.apsusc.2013.02.062
    [15] POLYCHRONOPOULOU K, ZEDAN A F, KATSIOTIS M S, BAKER M A, ALKHOORI A A, ALQARADAWI S Y, HINDER S J, ALHASSAN S.Rapid microwave assisted sol-gel synthesis of CeO2, and CexSm1-xO2, nanoparticle catalysts for CO oxidation[J].J Mol Catal A:Chem, 2017, 428:41-55.
    [16] MINAEI S, HAGHIGHI M, JODEIRI N, AJAMEIN H, ABDOLLAHIFAR M.Urea-nitrates combustion preparation of CeO2-promoted CuO/ZnO/Al2O3, nanocatalyst for fuel cell grade hydrogen production via methanol steam reforming[J].Adv Powder Technol, 2017, 28(3):842-853. doi: 10.1016/j.apt.2016.12.010
    [17] 张磊, 雷俊腾, 田园, 胡鑫, 白金, 刘丹, 杨义, 潘立卫.前驱体和沉淀剂浓度对CuO/ZnO/CeO2-ZrO2甲醇水蒸气重整制氢催化剂性能的影响[J].燃料化学学报, 2015, 43(11):1366-1374. doi: 10.3969/j.issn.0253-2409.2015.11.012

    ZHANG Lei, LEI Jun-teng, TIAN Yuan, HU Xin, BAI Jin, LIU Dan, YANG Yi, PAN Li-wei.Effect of precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming[J].J Fuel Chem Technol, 2015, 43(11):1366-1374. doi: 10.3969/j.issn.0253-2409.2015.11.012
    [18] RAO G R, SAHU H R, MISHRA B G.Surface and catalytic properties of Cu-Ce-O composite oxides prepared by combustion method[J].Colloids Surf A, 2003, 220(1):261-269. http://www.sciencedirect.com/science/article/pii/S0927775703000803
    [19] 杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭.稀土掺杂改性Cu/Zn-Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J].燃料化学学报, 2018, 46(2):179-188. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19166.shtml

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu.Rare-earth improvement of Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J].J Fuel Chem Technol, 2018, 46(2):179-188. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19166.shtml
    [20] SHANG H H, ZHANG X M, XU J, HAN Y F.Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation[J].Fron Chem Sci Eng, 2017, 11(4):603-612. doi: 10.1007/s11705-017-1661-z
    [21] ZENG S H, LIU Y, WANG Y Q.CuO-CeO2/Al2O3/FeCrAl monolithic catalysts prepared by sol-pyrolysis method for preferential oxidation of carbon monoxide[J].Catal Lett, 2007, 117(3/4):119-125.
    [22] HE J P, YANG Z X, ZHANG L, LI Y, PAN L W.Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3, as catalytic material with high catalytic activity for methanol steam reforming[J].Int J Hydrogen Energy, 2017, 42(15):1-8. https://www.researchgate.net/profile/Karin_Foettinger
    [23] SHEN W W, MAO D S, LUO Z M, YU J.CO oxidation on mesoporous SBA-15 supported CuO-CeO2 catalyst prepared by a surfactant-assisted impregnation method[J].RSC Adv, 2017, 7(44):27689-27698. doi: 10.1039/C7RA02966G
    [24] AMADINE O, ESSAMLALI Y, FIHRI A, LARZAEK M, ZAHOUILY M.Effect of calcination temperature on the structure and catalytic performance of copper-ceria mixed oxide catalysts in phenol hydroxylation[J].RSC Adv, 2017, 7(21):12586-12597. doi: 10.1039/C7RA00734E
    [25] ZHANG L, PAN L W, NI C J, SUN T J, WANG S D, HU Y K, WANG A J, ZHAO S S.Effects of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2, for methanol steam reforming[J].J Fuel Chem Technol, 2013, 41(7):883-888. doi: 10.1016/S1872-5813(13)60038-9
    [26] DAS D, LLORCA J, DOMINGUEZ M, COLUSSI S, TROVARELLI A, GAYEN A.Methanol steam reforming behavior of copper impregnated over CeO2-ZrO2, derived from asurfactant assisted coprecipitation route[J].Int J Hydrogen Energy, 2015, 40(33):10463-10479. doi: 10.1016/j.ijhydene.2015.06.130
    [27] LUO Z M, MAO D S, SHEN W W, ZHENG Y L, YU J.Preparation and characterization of mesostructured cellular foam silica supported Cu-Ce mixed oxide catalysts for CO oxidation[J].RSC Adv, 2017, 7(16):9732-9743. doi: 10.1039/C6RA25912J
    [28] BARABATO P S, COLUSSI S, BENEDETTO A D, LANDI G, LISI L, LLORCA J, TROVARELLI A.On the origin of high activity and selectivity of CuO/CeO2 catalysts prepared by solution combustion synthesis in CO-PROX reaction[J].J Phys Chen C, 2016, 120(24):13039-13048. doi: 10.1021/acs.jpcc.6b02433
    [29] DOSA M, PIUMETTI M, BENSAID S, ANDANA T, NOVARA C, GIORGIS F, FINO D, RUSSO N.Novel Mn-Cu-Containing CeO2, nanopolyhedra for the oxidation of CO and diesel soot:Effect of dopants on the nanostructure and catalytic activity[J].Catal Lett, 2018, 148(1):298-311. doi: 10.1007/s10562-017-2226-y
    [30] ZENG S H, ZHANG W L, GUO S L, SU H Q.Inverse rod-like CeO2 supported on CuO prepared by hydrothermal method for preferential oxidation of carbon monoxide[J].Catal Commun, 2012, 23(21):62-66. http://www.sciencedirect.com/science/article/pii/S1566736712000854
    [31] JI Y J, JIN Z Y, LI J, ZHANG Y, LIU H Z, SHI L S, ZHONG Z Y, SU F B.Rambutan-like hierarchically heterostructured CeO2-CuO hollow microspheres:Facile hydrothermal synthesis and applications[J].Nano Res, 2017, 10(2):381-396. doi: 10.1007/s12274-016-1298-0
    [32] ZHANG L, PAN L, NI C, SUN T, ZHAO S, WANG S, WANG A, HU Y.CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J].Int J Hydrogen Energy, 2013, 38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053
    [33] 张磊, 潘立卫, 倪长军, 孙天军, 赵生生, 王树东, 胡永康, 王安杰.沉淀温度对CuO/ZnO/CeO2/ZrO2甲醇水蒸气重整制氢催化剂性能的影响[J].催化学报, 2012, 33(12):1958-1964.

    ZHANG Lei, PAN Li-wei, NI Chang-jun, SUN Tian-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie.Effect of precipitation temperature on the performance of CuO/ZnO/CeO2/ZrO2 catalyst for methanol steam reforming[J].Chin J Catal, 2012, 33(12):1958-1964.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  52
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 修回日期:  2018-06-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-08-10

目录

    /

    返回文章
    返回