留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of Al-based layered double hydroxides and corresponding mixed oxides supported Pt catalysts and their performance in the hydrodeoxygenation of p-cresol

LIU Yan ZHU Guo-hua WU Kui LI Wen-song WANG Wei-yan YANG Yun-quan

刘艳, 朱国华, 仵奎, 李文松, 王威燕, 杨运泉. 铝基类水滑石和复合氧化物负载Pt催化剂的制备及对甲基苯酚加氢脱氧反应的催化性能[J]. 燃料化学学报(中英文), 2018, 46(10): 1193-1201.
引用本文: 刘艳, 朱国华, 仵奎, 李文松, 王威燕, 杨运泉. 铝基类水滑石和复合氧化物负载Pt催化剂的制备及对甲基苯酚加氢脱氧反应的催化性能[J]. 燃料化学学报(中英文), 2018, 46(10): 1193-1201.
LIU Yan, ZHU Guo-hua, WU Kui, LI Wen-song, WANG Wei-yan, YANG Yun-quan. Preparation of Al-based layered double hydroxides and corresponding mixed oxides supported Pt catalysts and their performance in the hydrodeoxygenation of p-cresol[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1193-1201.
Citation: LIU Yan, ZHU Guo-hua, WU Kui, LI Wen-song, WANG Wei-yan, YANG Yun-quan. Preparation of Al-based layered double hydroxides and corresponding mixed oxides supported Pt catalysts and their performance in the hydrodeoxygenation of p-cresol[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1193-1201.

铝基类水滑石和复合氧化物负载Pt催化剂的制备及对甲基苯酚加氢脱氧反应的催化性能

基金项目: 

the National Natural Science Foundation of China 21776236

the National Natural Science Foundation of China 21676225

Natural Science Foundation of Hunan Province 2018JJ2384

the Scientific Research Foundation of Huaihua University HHUY2017-08

详细信息
  • 中图分类号: O643

Preparation of Al-based layered double hydroxides and corresponding mixed oxides supported Pt catalysts and their performance in the hydrodeoxygenation of p-cresol

Funds: 

the National Natural Science Foundation of China 21776236

the National Natural Science Foundation of China 21676225

Natural Science Foundation of Hunan Province 2018JJ2384

the Scientific Research Foundation of Huaihua University HHUY2017-08

More Information
  • 摘要: 采用共沉淀法制备了多种铝基类水滑石,焙烧后得到对应的复合氧化物;以水滑石或复合氧化物为载体,制备了系列Pt基催化剂,研究了该催化剂对甲基苯酚加氢脱氧反应的催化性能。结果表明,Pt基催化剂的性能与载体的组分组成和结构相关;当以不经焙烧的类水滑石做载体时,所制备的Pt基催化剂具有较高的活性。其中,Pt-Ni-Al-H催化剂的加氢脱氧活性最高,对甲基苯酚转化率达到99.8%,甲苯选择性为1.4%,而Pt-Zn-Al-H催化剂的直接脱氧活性最高,在275℃和氢压2MPa下反应1h后,甲苯选择性达到84.1%。研究发现,反应过程中所生成的甲基环己烷可进一步发生脱氢反应转化为甲苯,说明所制备的Pt基催化剂具有较好的脱氢活性,可节省脱氧过程中的氢气消耗量。
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  FT-IR spectra of layered double hydroxides and corresponding Pt supported catalysts

    Figure  2  DTG curves of Ni-Al-H, Co-Al-H and Mg-Al-H layered double hydroxides

    Figure  3  XRD patterns of (a) layered double hydroxides, (b) Pt supported on layered double hydroxides, (c) metal mixed oxides and (d) Pt supported on metal mixed oxides

    Figure  4  HDO of p-cresol on Pt-Al-H, Pt-Mg-Al-H, Pt-Zn-Al-H, Pt-Co-Al-H and Pt-Ni-Al-H at 275 ℃ and 2 MPa for 1 h

    Figure  5  HDO of p-cresol on Pt-Al-O, Pt-Mg-Al-O, Pt-Zn-Al-O, Pt-Co-Al-O and Pt-Ni-Al-O at 275 ℃ and 2 MPa for 8 h

    Figure  6  H2-TPR curves of Pt-Ni-Al-H and Pt-Co-Al-H

    Figure  7  FT-IR spectra of adsorbed pyridine on Pt-Al-H, Pt-Ni-Al-H, Pt-Co-Al-H and Pt-Mg-Al-H

    Table  1  Effect of pressure on the HDO of p-cresol on Pt-Ni-Al-H at 275 ℃

    Pressure p/MPa Reaction time t/h p-cresol conversion x/% Product selectivity s/% Deoxygenation degree/%
    4-methylcyclohexene methylcyclohexane toluene
    1.0 1 27.5 1.3 69.3 29.4 25.3
    1.0 8 96.5 0.1 51.5 48.4 96.0
    2.0 1 99.9 0.1 98.5 1.4 99.9
    2.0 8 100 0 64.2 35.8 100
    3.0 1 100 0.3 99.3 0.4 100
    3.0 8 100 0 80.6 19.4 100
    4.0 1 100 0.1 99.8 0.1 100
    4.0 8 100 0 88.9 11.1 100
    下载: 导出CSV
  • [1] LIU Z, GUAN D B, WEI W, DAVIS S J, CIAIS P, BAI J, PENG S S, ZHANG Q, HUBACEK K, MARLAND G, ANDRES R J, CRAWFORD-B D, LIN J T, ZHAO H Y, HONG C P, BODEN T A, FENG K S, PETERS G P, XI F M, LIU J G, LI Y, ZHAO Y, ZENG N, HE K. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565):335-338. doi: 10.1038/nature14677
    [2] UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials:Review and perspective[J]. Chem Rev, 2016, 116(4):2275-2306. doi: 10.1021/acs.chemrev.5b00345
    [3] LIU C J, WANG H M, KARIM A M, SUN J M, WANG Y. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chem Soc Rev, 2014, 43(22):7594-7623. doi: 10.1039/C3CS60414D
    [4] PATEL M, KUMAR A. Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil:A review[J]. Renewable Sustainable Energy Rev, 2016, 58:1293-1307. doi: 10.1016/j.rser.2015.12.146
    [5] SAIDI M, SAMIMI F H, KARIMIPOURFARD D, NIMMANWUDIPONG T, GATES B C, RAHIMPOUR M R. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy Environ Sci, 2014, 7(1):103-129. doi: 10.1039/C3EE43081B
    [6] ROBINSON A M, HENSLEY J E, MEDLIN J. Will. Bifunctional catalysts for upgrading of biomass-derived qxygenates:A review[J]. ACS Catal, 2016, 6(8):5026-5043. doi: 10.1021/acscatal.6b00923
    [7] GAO D N, XIAO Y, VARMA A. Guaiacol hydrodeoxygenation over platinum catalyst:Reaction pathways and kinetics[J]. Ind Eng Chem Res, 2015, 54(43):10638-10644. doi: 10.1021/acs.iecr.5b02940
    [8] LI X P, CHEN G Y, LIU C X, MA W C, YAN B B, ZHANG J G. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts:A critical review[J]. Renewable Sustainable Energy Rev, 2017, 71:296-308. doi: 10.1016/j.rser.2016.12.057
    [9] SHAFAGHAT H, REZAEI P S, DAUD W M A W. Catalytic hydrodeoxygenation of simulated phenolic bio-oil to cycloalkanes and aromatic hydrocarbons over bifunctional metal/acid catalysts of Ni/HBeta, Fe/HBeta and NiFe/HBeta[J]. J Ind Eng Chem, 2016, 35:268-276. doi: 10.1016/j.jiec.2016.01.001
    [10] WANG W Y, ZHANG K, QIAO Z Q, LI L, LIU P L, YANG Y Q. Influence of surfactants on the synthesis of MoS2 catalysts and their activities in the hydrodeoxygenation of 4-Methylphenol[J]. Ind Eng Chem Res, 2014, 53(25):10301-10309. doi: 10.1021/ie500830f
    [11] WANG W Y, LI L, TAN S, WU K, ZHU G H, LIU Y, XU Y, YANG Y Q. Preparation of NiS2//MoS2 catalysts by two-step hydrothermal method and their enhanced activity for hydrodeoxygenation of p-cresol[J]. Fuel, 2016, 179:1-9. doi: 10.1016/j.fuel.2016.03.068
    [12] LIU G L, ROBERTSON A W, LI M M-J, KUO W C H, DARBY M T, MUHIEDDINE M H, LIN Y-C, SUENAGA K, STAMATAKIS M, WARNER J H, TSANG S C E. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J]. Nat Chem, 2017, 9:810-816. doi: 10.1038/nchem.2740
    [13] BADAWI M, PAUL J F, CRISTOL S, PAYEN E, ROMERO Y, RICHARD F, BRUNET S, LAMBERT D, PORTIER X, POPOV A, KONDRATIEVA E, GOUPIL J M, EI F J, GILSON J P, MARIEY L, TRAVERT A, MAUGÉ F. Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts:A combined experimental and DFT study[J]. J Catal, 2011, 282(1):155-164. doi: 10.1016/j.jcat.2011.06.006
    [14] ZHAO C, KOU Y, LEMONIDOU A A, LI X B, LERCHER J A. Highly selective catalytic conversion of phenolic bio-oil to alkanes[J]. Angew Chem Int Ed, 2009, 48(22):3987-3990. doi: 10.1002/anie.v48:22
    [15] WANG W Y, LIU P L, WU K, TAN S, LI W S, YANG Y Q. Preparation of hydrophobic reduced graphene oxide supported Ni-B-P-O and Co-B-P-O catalysts and their high hydrodeoxygenation activities[J]. Green Chem, 2016, 18(4):984-988. doi: 10.1039/C5GC02073E
    [16] LEE E H, PARK R-S, KIM H, PARK S H, JUNG S-C, JEON J-K, KIM S C, PARK Y-K. Hydrodeoxygenation of guaiacol over Pt loaded zeolitic materials[J]. J Ind Eng Chem, 2016, 37:18-21. doi: 10.1016/j.jiec.2016.03.019
    [17] ROBINSON A, FERGUSON G A, GALLAGHER J R, CHEAH S, BECKHAM G T, SCHAIDLE J A, HENSLEY J E, MEDLIN J W. Enhanced hydrodeoxygenation of m-Cresol over bimetallic pt-mo catalysts through an oxophilic metal-induced tautomerization pathway[J]. ACS Catal, 2016, 6(7):4356-4368. doi: 10.1021/acscatal.6b01131
    [18] HUNNS J A, ARROYO M, LEE A F, ESCOLA J M, SERRANO D, WILSON K. Hierarchical mesoporous Pd/ZSM-5 for the selective catalytic hydrodeoxygenation of m-cresol to methylcyclohexane[J]. Catal Sci Technol, 2016, 6(8):2560-2564. doi: 10.1039/C5CY02072G
    [19] BUI V N, LAURENTI D, DELICHÈRE P, GEANTET C. Hydrodeoxygenation of guaiacol:Part Ⅱ:Support effect for CoMoS catalysts on HDO activity and selectivity[J]. Appl Catal B:Environ, 2011, 101(3/4):246-255. http://cn.bing.com/academic/profile?id=076007005c37f624d27e2cf773a2829b&encoded=0&v=paper_preview&mkt=zh-cn
    [20] WANG W Y, WU K, LIU P L, LI L, YANG Y Q, WANG Y. Hydrodeoxygenation of p-cresol over Pt/Al2O3 catalyst promoted by ZrO2, CeO2, and CeO2-ZrO2[J]. Ind Eng Chem Res, 2016, 55(28):7598-7603. doi: 10.1021/acs.iecr.6b00515
    [21] ZANUTTINI M S, PERALTA M A, QUERINI C A. Deoxygenation of m-cresol:Deactivation and regeneration of Pt/γ-Al2O3 catalysts[J]. Ind Eng Chem Res, 2015, 54(18):4929-4939. doi: 10.1021/acs.iecr.5b00305
    [22] NIKULSHIN P A, SALNIKOV V A, VARAKIN A N, KOGAN V M. The use of CoMoS catalysts supported on carbon-coated alumina for hydrodeoxygenation of guaiacol and oleic acid[J]. Catal Today, 2016, 271:45-55. doi: 10.1016/j.cattod.2015.07.032
    [23] SHUKLA A A, GOSAVI P V, PANDE J V, KUMAR V P, CHARY K V R, BINIWALE R B. Efficient hydrogen supply through catalytic dehydrogenation of methylcyclohexane over Pt/metal oxide catalysts[J]. Int J Hydrogen Energy, 2010, 35(9):4020-4026. doi: 10.1016/j.ijhydene.2010.02.014
    [24] YU J F, GE Q J, FANG W, XU H Y. Enhanced performance of Ca-doped Pt/γ-Al2O3 catalyst for cyclohexane dehydrogenation[J]. Int J Hydrogen Energy, 2011, 36(18):11536-11544. doi: 10.1016/j.ijhydene.2011.06.066
    [25] MANFRO R L, PIRES T P M D, RIBEIRO N F P, SOUZA M M V M. Aqueous-phase reforming of glycerol using Ni-Cu catalysts prepared from hydrotalcite-like precursors[J]. Catal Sci Technol, 2013, 3(5):1278-1287. doi: 10.1039/c3cy20770f
    [26] TIAN Z B, LI Q Y, HOU J Y, PEI L, LI Y, AI S Y. Platinum nanocrystals supported on CoAl mixed metal oxide nanosheets derived from layered double hydroxides as catalysts for selective hydrogenation of cinnamaldehyde[J]. J Catal, 2015, 331:193-202. doi: 10.1016/j.jcat.2015.08.020
    [27] LIU X F, FAN B B, GAO S C, LI R F. Transesterification of tributyrin with methanol over MgAl mixed oxides derived from MgAl hydrotalcites synthesized in the presence of glucose[J]. Fuel Process Technol, 2013, 106:761-768. doi: 10.1016/j.fuproc.2012.10.014
    [28] KONG X, ZHENG R X, ZHU Y F, DING G Q, ZHU Y L, LI Y W. Rational design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxymethylfurfural[J]. Green Chem, 2015, 17(4):2504-2514. doi: 10.1039/C5GC00062A
    [29] GENNEQUIN C, SIFFERT S, COUSIN R, ABOUKAÏS A. Co-Mg-Al hydrotalcite precursors for catalytic total qxidation of volatile organic compounds[J]. Top Catal, 2009, 52(5):482-491. doi: 10.1007/s11244-009-9183-7
    [30] CAI W Q, YU J G, JARONIEC M. Template-free synthesis of hierarchical spindle-likeγ-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water[J]. J Mater Chem, 2010, 20(22):4587-4594. doi: 10.1039/b924366f
    [31] BONURA G, CORDARO M, CANNILLA C, ARENA F, FRUSTERI F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol[J]. Appl Catal B:Environ, 2014, 152-153:152-161. doi: 10.1016/j.apcatb.2014.01.035
    [32] DE S P M, RABELO-N R C, BORGES L E P, JACOBS G, DAVIS B H, SOOKNOI T, RESASCO D E, NORONHA F B. Role of keto intermediates in the hydrodeoxygenation of phenol over Pd on qxophilic supports[J]. ACS Catal, 2015, 5(2):1318-1329. doi: 10.1021/cs501853t
    [33] DO P T M, FOSTER A J, CHEN J G, LOBO R F. Bimetallic effects in the hydrodeoxygenation of meta-cresol onγ-Al2O3 supported Pt-Ni and Pt-Co catalysts[J]. Green Chem, 2012, 14(5):1388-1397. doi: 10.1039/c2gc16544a
    [34] SHI D, VOHS J M. Deoxygenation of biomass-derived oxygenates:reaction of furfural on Zn-modified Pt(111)[J]. ACS Catal, 2015, 5(4):2177-2183. doi: 10.1021/acscatal.5b00038
    [35] CHEN W B, NIE H, LI D D, LONG X Y, VAN G J, MAUGÉ F. Effect of Mg addition on the structure and performance of sulfide Mo/Al2O3 in HDS and HDN reaction[J]. J Catal, 2016, 344:420-433. doi: 10.1016/j.jcat.2016.08.025
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  21
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-16
  • 修回日期:  2018-08-29
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-10-10

目录

    /

    返回文章
    返回