留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧温度对甲醇水蒸气重整制氢Ce/Cu/Zn-Al水滑石衍生催化剂的影响

杨淑倩 刘玉娟 刘进博 房明明 肖国鹏 张磊 陈琳 苑兴洲 张健

杨淑倩, 刘玉娟, 刘进博, 房明明, 肖国鹏, 张磊, 陈琳, 苑兴洲, 张健. 焙烧温度对甲醇水蒸气重整制氢Ce/Cu/Zn-Al水滑石衍生催化剂的影响[J]. 燃料化学学报(中英文), 2018, 46(12): 1482-1490.
引用本文: 杨淑倩, 刘玉娟, 刘进博, 房明明, 肖国鹏, 张磊, 陈琳, 苑兴洲, 张健. 焙烧温度对甲醇水蒸气重整制氢Ce/Cu/Zn-Al水滑石衍生催化剂的影响[J]. 燃料化学学报(中英文), 2018, 46(12): 1482-1490.
YANG Shu-qian, LIU Yu-juan, LIU Jin-bo, FANG Ming-ming, XIAO Guo-peng, ZHANG Lei, CHEN Lin, YUAN Xing-zhou, ZHANG Jian. Effect of calcination temperature on the catalytic performance of the hydrotalcite derived Ce/Cu/Zn-Al catalysts for hydrogen production via methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1482-1490.
Citation: YANG Shu-qian, LIU Yu-juan, LIU Jin-bo, FANG Ming-ming, XIAO Guo-peng, ZHANG Lei, CHEN Lin, YUAN Xing-zhou, ZHANG Jian. Effect of calcination temperature on the catalytic performance of the hydrotalcite derived Ce/Cu/Zn-Al catalysts for hydrogen production via methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1482-1490.

焙烧温度对甲醇水蒸气重整制氢Ce/Cu/Zn-Al水滑石衍生催化剂的影响

基金项目: 

国家自然科学基金 21376237

辽宁省博士科研启动基金 201601322

辽宁省教育厅科学研究一般项目 L2015296

详细信息
  • 中图分类号: O643

Effect of calcination temperature on the catalytic performance of the hydrotalcite derived Ce/Cu/Zn-Al catalysts for hydrogen production via methanol steam reforming

Funds: 

the National Natural Science Foundation of China 21376237

the Doctoral Scientific Research Foundation of Liaoning Province 201601322

the Science Research General Foundation of Liaoning Education Department L2015296

More Information
  • 摘要: 采用原位合成法在γ-Al2O3载体表面上合成了Zn-Al水滑石,再采用顺序浸渍法制备了一系列Ce/Cu/Zn-Al催化剂,并采用XRD、BET、H2-TPR和XPS等手段对催化剂进行了表征,考察了焙烧温度对Ce/Cu/Zn-Al催化剂表面结构及其催化甲醇水蒸气重整制氢性能的影响。结果表明,焙烧温度主要影响了催化剂的Cu比表面积、表面氧空穴含量和Cu-Ce间相互作用。当焙烧温度为500℃时,催化剂Cu的比表面积较大,表面氧空穴含量较多,Cu-Ce间相互作用较强,因此,催化甲醇水蒸气重整制氢活性较好。当焙烧温度升高到700℃时,Cu物种主要以稳定的CuAl2O4尖晶石形式存在,不利于甲醇水蒸气重整制氢反应的进行,因此,催化活性较差。
  • 图  1  不同焙烧温度下制备催化剂的XRD谱图

    Figure  1  XRD patterns of the catalysts calcined at various temperatures

    a: Ce/Cu/Zn-Al-400; b: Ce/Cu/Zn-Al-500; c: Ce/Cu/Zn-Al-600; d: Ce/Cu/Zn-Al-700

    图  2  不同焙烧温度下制备催化剂的H2-TPR谱图

    Figure  2  H2-TPR profiles of the catalysts calcined at various temperatures

    a: Ce/Cu/Zn-Al-400; b: Ce/Cu/Zn-Al-500; c: Ce/Cu/Zn-Al-600; d: Ce/Cu/Zn-Al-700

    图  3  不同焙烧温度下制备催化剂的Zn 2p的XPS谱图

    Figure  3  Zn 2p XPS spectra of the catalysts calcined at various temperatures

    a: Ce/Cu/Zn-Al-400; b: Ce/Cu/Zn-Al-500; c: Ce/Cu/Zn-Al-600; d: Ce/Cu/Zn-Al-700

    图  4  不同焙烧温度下制备催化剂的Al 2p的XPS谱图

    Figure  4  Al 2p XPS spectra of the catalysts calcined at various temperatures

    a: Ce/Cu/Zn-Al-400; b: Ce/Cu/Zn-Al-500; c: Ce/Cu/Zn-Al-600; d: Ce/Cu/Zn-Al-700

    图  5  不同焙烧温度下制备催化剂的Cu 2p的XPS谱图

    Figure  5  Cu 2p XPS spectra of the catalysts calcined at various temperatures

    a: Ce/Cu/Zn-Al-400; b: Ce/Cu/Zn-Al-500; c: Ce/Cu/Zn-Al-600; d: Ce/Cu/Zn-Al-700

    图  6  不同焙烧温度下制备催化剂的Cu俄歇谱图

    Figure  6  Cu Auger spectra of the catalysts calcined at various temperatures

    a: Ce/Cu/Zn-Al-400; b: Ce/Cu/Zn-Al-500; c: Ce/Cu/Zn-Al-600; d: Ce/Cu/Zn-Al-700

    图  7  不同焙烧温度下制备催化剂的Ce 3d的XPS谱图

    Figure  7  Ce 3d XPS spectra of the catalysts calcined at various temperatures

    a: Ce/Cu/Zn-Al-400; b: Ce/Cu/Zn-Al-500; c: Ce/Cu/Zn-Al-600; d: Ce/Cu/Zn-Al-700

    图  8  不同焙烧温度下制备催化剂的O 1s的XPS谱图

    Figure  8  O 1s XPS spectra of the catalysts calcined at various temperatures

    a: Ce/Cu/Zn-Al-400; b: Ce/Cu/Zn-Al-500; c: Ce/Cu/Zn-Al-600; d: Ce/Cu/Zn-Al-700

    图  9  反应温度对催化剂性能的影响

    Catalytic activity as a function of the reaction temperature

    图  10  反应温度对催化剂CO浓度的影响

    Figure  10  CO molar concentration as a function of the reaction temperature

    : Ce/Cu/Zn-Al-400; : Ce/Cu/Zn-Al-500; : Ce/Cu/Zn-Al-600; : Ce/Cu/Zn-Al-700; : thermodynamic equilibrium
    (reaction conditions: W/M=1.2 :1, GHSV=800 h-1, no carrier gas)

    表  1  催化剂的物化性质及其催化甲醇水蒸气重整反应中氢气产率

    Table  1  Physical characteristics of the prepared catalysts and hydrogen production rate in methanol steam reforming

    Catalyst ABET
    /(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Pore size
    d/nm
    Cu dispersiona/% Cu surface areaa
    A/(m2·g-1)
    H2 production rateb
    /(cm3·kg-1·s-1)
    Ce/Cu/Zn-Al-400 84.7 0.35 15.6 4.8 2.7 603.3
    Ce/Cu/Zn-Al-500 109.6 0.41 15.3 11.5 \6.3 810.7
    Ce/Cu/Zn-Al-600 77.2 0.38 18.8 3.7 2.0 505.4
    Ce/Cu/Zn-Al-700 72.2 0.37 20.7 2.7 1.5 330.3
    a: determined by N2O experiments;
    b: reaction conditions: atmospheric, 240 ℃, W/M=1.2 : 1, GHSV=800 h-1, no carrier gas
    下载: 导出CSV

    表  2  不同焙烧温度下制备催化剂的Ce 3d和O 1s XPS拟合结果

    Table  2  Ce 3d and O 1s XPS curve-fitting results of catalysts calcined at various temperatures

    Catalyst Ce3+ /(Ce3++ Ce4+)/% Oads/(Oads+O-OH+Olatt)w/%
    Ce/Cu/Zn-Al-400 21.77 0.62
    Ce/Cu/Zn-Al-500 21.89 0.40
    Ce/Cu/Zn-Al-600 21.61 0.39
    Ce/Cu/Zn-Al-700 20.58 0.27
    下载: 导出CSV
  • [1] RYAN J G, KHALID A A, WILLIAM H G. Thermochemical production of hydrogen from hydrogen sulfide with iodine thermochemical cycles[J]. Int J Hydrogen Energy, 2018, 43(29):12939-12947. doi: 10.1016/j.ijhydene.2018.04.217
    [2] CLAUDE L. From hydrogen production by water electrolysis to its utilization in a PEM fuel cell or in a SO fuel cell:Some considerations on the energy efficiencies[J]. Int J Hydrogen Energy, 2016, 41(34):15415-15425. doi: 10.1016/j.ijhydene.2016.04.173
    [3] HOSSAIN M A, JEWARATNAM J, GANESAN P. Prospect of hydrogen production from oil palm biomass by thermochemical processe-A review[J]. Int J Hydrogen Energy, 2016, 41(38):16637-16655. doi: 10.1016/j.ijhydene.2016.07.104
    [4] SANDRA S, HUGO S, LUCIA B, SOUSA J M, MENDES A. Catalysts for methanol steam reforming-A review[J]. Appl Catal B:Environ, 2010, 99(1/2):43-57. http://www.sciencedirect.com/science/article/pii/S0926337310002584
    [5] 苏石龙, 张磊, 张艳, 雷俊腾, 桂建州, 刘丹, 刘道胜, 潘立卫.千瓦级PEMFC甲醇水蒸气重整制氢过程热力学模拟[J].石油化工高等学校学报, 2015, 28(2):19-25. doi: 10.3969/j.issn.1006-396X.2015.02.004

    SU Shi-long, ZHANG Lei, ZHANG Yan, LEI Jun-teng, GUI Jian-zhou, LIU Dan, LIU Dao-sheng, PAN Li-wei. Thermodynamic Simulation for Hydrogen Production in the Methanol Steam Reforming System of Kilowatt PEMFC[J]. J Petrochem Univ, 2015, 28(2):19-25. doi: 10.3969/j.issn.1006-396X.2015.02.004
    [6] SANCHES S G, FLORES J H, PAIS DA SILVA M I. Cu/ZnO and Cu/ZnO/ZrO2 catalysts used for methanol steam reforming[J]. Mol Catal, 2018, 454:55-62. doi: 10.1016/j.mcat.2018.05.012
    [7] XU T K, ZOU J, TAO W T, ZHANG S Y, CUI L, ZENG F L, WANG D Z, CAI W J. Co-nanocasting synthesis of Cu based composite oxide and itspromoted catalytic activity for methanol steam reforming[J]. Fuel, 2018, 183:238-244. http://www.sciencedirect.com/science/article/pii/S0016236116305403
    [8] LI J, ZHANG Q J, LONG X, QI P, LIU Z T, LIU Z W. Hydrogen production for fuel cells via steam reforming of dimethyl ether over commercial Cu/ZnO/Al2O3 and zeolite[J]. Chem Eng J, 2012, 187:299-305. doi: 10.1016/j.cej.2012.01.126
    [9] CHOI Y, FUTAGAMI K, FUTAGAMI K, FUJITANI T, NAKAMURA J. The role of ZnO in Cu/ZnO methanol synthesis catalysts-morphology effect or active site model[J]. Appl Catal A:Gen, 2001, 208(1/2):163-167. http://www.sciencedirect.com/science/article/pii/S0926860X00007122
    [10] XIAO S, ZHANG Y F, GAO P, ZHONG L S, LI X P, ZHANG Z Z, WANG H, WEI W, SUN Y H. Highly efficient Cu-based catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Catal Today, 2017, 281:327-336. doi: 10.1016/j.cattod.2016.02.004
    [11] HAMMOUD D, GENNEQUIN C, ABOUKAIS A, AAD E A. Steam reforming of methanol over x% Cu/Zn-Al 400500 based catalysts for production of hydrogen:Preparation by adopting memory effect of hydrotalcite and behavior evaluation[J]. Int J Hydrogen Energy, 2015, 40(2):1283-1297. doi: 10.1016/j.ijhydene.2014.09.080
    [12] HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017, 42(15):9930-9937. doi: 10.1016/j.ijhydene.2017.01.229
    [13] 贺建平, 张磊, 陈琳, 杨占旭, 佟宇飞. CeO2改性Cu/Zn-Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J].高等学校化学学报, 2017, 38:1822-1828. doi: 10.7503/cjcu20170158

    HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei. Effect of CeO2 on Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J]. Chem J Chin Univ, 2017, 38:1822-1828. doi: 10.7503/cjcu20170158
    [14] 杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭.稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J].燃料化学学报, 2018, 46(2):179-188. doi: 10.3969/j.issn.0253-2409.2018.02.007

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(2):179-188. doi: 10.3969/j.issn.0253-2409.2018.02.007
    [15] 杨淑倩, 张娜, 贺建平, 张磊, 王宏浩, 白金, 张健, 刘道胜, 杨占旭. Ce的浸渍顺序对Cu/Zn-Al水滑石衍生催化剂用于甲醇水蒸气重整制氢性能的影响[J].燃料化学学报, 2018, 46(4):479-488. doi: 10.3969/j.issn.0253-2409.2018.04.014

    YANG Shu-qian, ZHANG Na, HE Jian-ping, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Jian, LIU Dao-sheng, YANG Zhan-xu. Effect of impregnation sequence of Ce on the performance of Cu/Zn-Al catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(4):479-488. doi: 10.3969/j.issn.0253-2409.2018.04.014
    [16] 刘玉娟, 许骥, 佟宇飞, 张娜, 张磊, 刘道胜, 韩蛟, 张财顺.氧化铈纳米材料合成方法的研究进展[J].辽宁石油化工大学学报, 2017, 37(5):8-12. doi: 10.3969/j.issn.1672-6952.2017.05.002

    LIU Yu-Juan, XU Ji, TONG Yu-fei, ZHANG Na, ZHANG Lei, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Progress in research of the synthesis methods of nanometer ceria[J]. J Liaoning Univ Pet Chem Technol, 2017, 37(5):8-12. doi: 10.3969/j.issn.1672-6952.2017.05.002
    [17] 张秋林, 徐海迪, 李伟, 林涛, 龚茂初, 陈耀强.焙烧温度对MnO2-CeO2/Zr0.25Ti0.25Al0.5O1.75整体式催化剂NH3低温选择性催化还原NO性能的影响[J].催化学报, 2010, 31(2):229-235. http://d.wanfangdata.com.cn/Periodical/cuihuaxb201002017

    ZHANG Qiu-lin, XU Hai-di, LI Wei, LIN Tao, GONG Mao-chun, CHEN Yao-qiang. Influence of calcination temperature on performance of monolith catalyst MnO2-CeO2/Zr0.25Ti0.25Al0.5O1.75 for selective catalytic reduction of NO by NH3 at low temperature[J]. Chin J Catal, 2010, 31(2):229-235. http://d.wanfangdata.com.cn/Periodical/cuihuaxb201002017
    [18] BIALAS A, KUSTROWSKI P, DUDEK B, PIWOWARSKA Z, WACH A, MICHALIK M, KOZAK M. Copper-aluminum oxide catalysts for total oxidation of toluene synthesized by thermal decomposition of co-precipitated precursors[J]. Thermochim Acta, 2014, 590:191-197. doi: 10.1016/j.tca.2014.06.027
    [19] 方书农, 姜明, 伏义路, 林培琰, 乔山, 谢亚宁.不同焙烧温度对Cu/γ-Al2O3催化剂铜物种结构的影响[J].物理化学学报, 1994, 10(7):623-627. doi: 10.3866/PKU.WHXB19940709

    FANG Shu-nong, JIANG Ming, FU Yi-lu, LIN Pei-yan, QIAO Shan, XIE Ya-ning. The effect of different calcination temperature on the structure of Cu/γ-Al2O3 catalysts[J]. Acta Phys Chim Sin, 1994, 10(7):623-627. doi: 10.3866/PKU.WHXB19940709
    [20] 孙蛟, 任国卿, 黄玉辉, 陈晓蓉, 梅华.焙烧温度对CuMgAl催化剂催化糠醛气相加氢制糠醇性能的影响[J].燃料化学学报, 2017, 45(1):43-47. doi: 10.3969/j.issn.0253-2409.2017.01.007

    SUN Jiao, REN Guo-qing, HUANG Yu-hui, CHEN Xiao-rong, MEI Hua. Effect of calcination temperature on the catalytic performance of CuMgAl catalysts for furfural gas phase selective hydrogenation to furfuryl alcohol[J]. J Fuel Chem Technol, 2017, 45(1):43-47. doi: 10.3969/j.issn.0253-2409.2017.01.007
    [21] BASAG S, PIWOWARSKA Z, KOWALCZYK A, WEGRZYN A, BARAN R, GIL B, MICHALIK M, CHMIELARZ L. Cu-Mg-Al hydrotalcite-like materials as precursors of effective catalysts for selective oxidation of ammonia to dinitrogen-The influence of Mg/Al ratio and calcination temperature[J]. Appl Clay Sci, 2016, 129:122-130. doi: 10.1016/j.clay.2016.05.019
    [22] ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053
    [23] GUO X M, MAO D S, LU G Z, WANG S, WU G S. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction[J].Catal Commun, 2011, 12(12):1095-1098. doi: 10.1016/j.catcom.2011.03.033
    [24] SHIM J O, NA H S, JHA A, JANG W J, JEONG D W, NAH I W, JEON B H, ROH H S. Effect of preparation method on the oxygen vacancy concentration of CeO2-promoted Cu/γ-Al2O3 catalysts for HTS reactions[J]. Chem Eng J, 2016, 306:908-915. doi: 10.1016/j.cej.2016.08.030
    [25] BYOUNG K K, DAE S P, YANG S Y, JONGHEOP Y. Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol-gel method for the hydrogenolysis of glycerol[J]. Catal Commun, 2012, 24:90-95. doi: 10.1016/j.catcom.2012.03.029
    [26] 覃发玠, 刘雅杰, 庆绍军, 侯晓宁, 高志贤.甲醇制氢铜铝尖晶石缓释催化剂的研究-不同铜源合成的影响[J].燃料化学学报, 2017, 45(12):1481-1488. doi: 10.3969/j.issn.0253-2409.2017.12.010

    QIN Fa-jie, LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming:Effects of different copper sources[J]. J Fuel Chem Technol, 2017, 45(12):1481-1488. doi: 10.3969/j.issn.0253-2409.2017.12.010
    [27] WANG J, ZHONG L P, LU J C, CHEN R, LEI Y Q, CHEN K Z, HAN C H, HE S F, WAN G P, LUO Y M. A solvent-free method to rapidly synthesize CuO-CeO2 catalysts to enhance their CO preferential oxidation:Effects of Cu loading and calcination temperature[J]. Mol Catal, 2017, 443:241-252. doi: 10.1016/j.mcat.2017.10.012
    [28] LUO M F, FANG P, HE M, XIE Y L. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. J Mol Catal A:Chem, 2005, 239(1/2):243-248. http://www.sciencedirect.com/science/article/pii/S1381116905004164
    [29] 张磊, 雷俊腾, 田园, 胡鑫, 白金, 刘丹, 杨义, 潘立卫.前驱体和沉淀剂浓度对CuO/ZnO/CeO2-ZrO2甲醇水蒸气重整制氢催化剂性能的影响[J].燃料化学学报, 2015, 43(11):1366-1374. doi: 10.3969/j.issn.0253-2409.2015.11.012

    ZHANG Lei, LEI Jun-teng, TIAN Yuan, HU Xin, BAI Jin, LIU Dan, YANG Yi, PAN Li-wei. Effect of precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming[J]. J Fuel Chem Technol, 2015, 43(11):1366-1374. doi: 10.3969/j.issn.0253-2409.2015.11.012
    [30] TANG D M, LIU G, LI F, TAN J, LIU C, LU G Q, CHENG H M. Synthesis and photoelectrochemical property of Urchin-like Zn/ZnO core-shell structures[J]. J Phys Chem C, 2009, 113(25):11035-11040. doi: 10.1021/jp8107254
    [31] SEO Y S, CHOI T Y, HA J, JEONG D Y, LEE S Y, KIM D. Enhancement of stability of aqueous suspension of alumina nanoparticles by femtosecond laser irradiation[J]. J Appl Phys, 2015, 118:114906. doi: 10.1063/1.4931373
    [32] WANG C, CHENG Q P, WANG X L, MA K, BAI X Q, TAN S R, TIAN Y, TONG D, ZHENG L R, ZHANG J, LI X G. Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals[J]. Appl Surf Sci, 2017, 422:932-943. doi: 10.1016/j.apsusc.2017.06.017
    [33] 张国强, 郭天玉, 郑华艳, 李忠.焙烧温度对CuCe/Ac催化剂甲醇氧化羰基化性能的影响[J].燃料化学学报, 2016, 44(6):674-679. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18844.shtml

    ZHANG Guo-qiang, GUO Tian-yu, LI Zhong. Effect of calcination temperature on catalytic performance of CuCe/Ac catalysts for oxidative carbonylation of methanol[J]. J Fuel Chem Technol, 2016, 44(6):674-679. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18844.shtml
    [34] FAN J, WU X D, WU X D, LIANG Q, RAN R, WENG D. Thermal ageing of Pt on low-surface-area CeO2-ZrO2-La2O3 mixed oxides:Effect on the OSC performance[J]. Appl Catal B:Environ, 2008, 81(1/2):38-48. http://www.sciencedirect.com/science/article/pii/S0926337307004183
    [35] LIOTTA L F, CARLO G D, PANTALEO G, VENEZIA A M, DEGANELLO G. Co3O4/CeO2 composite oxides for methane emissions abatement:Relationship between Co3O4-CeO2 interaction and catalytic activity[J]. Appl Catal B:Environ, 2006, 66(3/4):217-227.
    [36] LIANG F L, YU Y, ZHOU W, XU X Y, ZHU Z H. Highly defective CeO2 as a promoter for efficient and stable water oxidation[J]. J Mater Chem A, 2015, 3(2):634-640. doi: 10.1039/C4TA05770H
    [37] LIN S S, CHEN C L, CHANG D J, CHEN C C. Catalytic wet air oxidation of phenol by various CeO2 catalysts[J]. Water Res, 2002, 36(12):3009-3014. doi: 10.1016/S0043-1354(01)00539-5
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  36
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-20
  • 修回日期:  2018-11-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-12-10

目录

    /

    返回文章
    返回