留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯化亚铬脱除黄铁矿对桦甸油页岩有机质结构的影响

李扬 刘清雅 赵晓胜 汤瑞祥 卢政华 石磊

李扬, 刘清雅, 赵晓胜, 汤瑞祥, 卢政华, 石磊. 氯化亚铬脱除黄铁矿对桦甸油页岩有机质结构的影响[J]. 燃料化学学报(中英文), 2019, 47(2): 144-152.
引用本文: 李扬, 刘清雅, 赵晓胜, 汤瑞祥, 卢政华, 石磊. 氯化亚铬脱除黄铁矿对桦甸油页岩有机质结构的影响[J]. 燃料化学学报(中英文), 2019, 47(2): 144-152.
LI Yang, LIU Qing-ya, ZHAO Xiao-sheng, TANG Rui-xiang, LU Zheng-hua, SHI Lei. Effect of pyrite removal by chromous chloride on organic matter structure in Huadian oil shale[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 144-152.
Citation: LI Yang, LIU Qing-ya, ZHAO Xiao-sheng, TANG Rui-xiang, LU Zheng-hua, SHI Lei. Effect of pyrite removal by chromous chloride on organic matter structure in Huadian oil shale[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 144-152.

氯化亚铬脱除黄铁矿对桦甸油页岩有机质结构的影响

基金项目: 

国家重点基础研究发展规划 973 program

国家重点基础研究发展规划 2014CB744301

详细信息
  • 中图分类号: TE662

Effect of pyrite removal by chromous chloride on organic matter structure in Huadian oil shale

Funds: 

the National Basic Research Program of China 973 program

the National Basic Research Program of China 2014CB744301

More Information
    Corresponding author: ZHAO Xiao-sheng, Tel: 010-64429158, E-mail: zhaoxs811@163.com
  • 摘要: 采用元素分析、13C NMR、XPS和TG-MS技术考察了氯化亚铬(CrCl2)脱除黄铁矿对桦甸油页岩有机质结构的影响。结果表明,CrCl2可有效脱除有机质中的黄铁矿,脱除率为96.19%。CrCl2对有机质的碳骨架结构影响较小,脱除黄铁矿前后有机质中脂碳、芳碳和羧基/羰基碳的相对含量以及有机质的热解特征温度基本保持不变,但CrCl2可破坏有机质中的C-O键,使C-O/C-OH和O=C-O的含量减少,造成0.98%的有机碳损失和12.54%的有机质损失。CrCl2处理后,有机质的C含量显著增加,H含量稍有增加,O含量显著降低,使得H/C略微降低,O/C明显降低。另外,CrCl2处理后,单位质量有机质中脂碳的含量增加了5.28%,使其热解过程中产生了更多的挥发分,残留的氧化铬对有机质的热分解可能也具有促进作用。
  • 图  1  HD-CF和HD-CFCr的XRD谱图

    Figure  1  XRD patterns of HD-CF and HD-CFCr

    图  2  HD-CF和HD-CFCr的13C NMR谱图

    Figure  2  13C NMR spectra of HD-CF and HD-CFCr

    图  3  HD-CF和HD-CFCr的XPS C 1s及其分峰拟合谱图

    Figure  3  XPS C 1s spectra and their fitting curves of HD-CF and HD-CFCr

    图  4  HD-CF和HD-CFCr的TG和DTG曲线

    Figure  4  TG and DTG curves of HD-CF and HD-CFCr

    图  5  HD-CF和HD-CFCr热解气态产物的析出曲线

    Figure  5  Gaseous products evolution curves detected by MS during pyrolysis of HD-CF and HD-CFCr

    表  1  桦甸油页岩的工业分析、元素分析及铝甑分析

    Table  1  Proximate, ultimate and Fischer assay analyses of Huadian oil shale

    Proximate analysis wad /% Ultimate analysis wad /% Fischer assay wad /%
    M A V FC C H N S char oil water gas
    2.83 70.27 22.30 4.51 16.74 2.33 0.32 0.82 86.97 7.21 2.39 3.37
    ad: air dry basis; M: moisture; A: ash; V: volatile matter; FC: fixed carbon
    下载: 导出CSV

    表  2  HD-CF和HD-CFCr的工业分析

    Table  2  Proximate analysis of HD-CF and HD-CFCr

    Sample Proximate analysis wad/%
    M A V FC
    HD-CF 0.93 13.58 64.08 21.41
    HD-CFCr 0.25 1.69 75.95 22.11
    下载: 导出CSV

    表  3  HD-CF和HD-CFCr的XRF分析

    Table  3  XRF analysis of HD-CF and HD-CFCr

    Sample Component wad /%
    SO3 Fe2O3 F Cr2O3 Al2O3 MgO CaO TiO2 SiO2 Cl others
    HD-CF 20.30 15.48 20.77 0 18.17 7.73 4.02 1.68 0.87 4.49 6.48
    HD-CFCr 44.45 3.91 0 26.04 1.73 0.61 2.58 7.25 2.05 10.58 0.81
    下载: 导出CSV

    表  4  HD-CF和HD-CFCr的灰分组成

    Table  4  Ash component of HD-CF and HD-CFCr

    Sample wad /% Component wad /%
    A Fe2O3 Cr2O3 Al2O3 MgO CaO TiO2 SiO2 others
    HD-CF 13.58 3.86 0 4.53 1.93 1.00 0.42 0.22 1.62
    HD-CFCr 1.69 0.15 0.98 0.07 0.02 0.10 0.27 0.08 0.02
    下载: 导出CSV

    表  5  HD-CF和HD-CFCr的元素分析

    Table  5  Ultimate analysis of HD-CF and HD-CFCr

    Sample Ultimate analysis wdaf/% Molar ratio
    C H O* N St H/C O/C
    HD-CF 66.95 8.44 19.91 1.42 3.28 1.51 0.22
    HD-CFCr 75.43 9.30 12.65 1.52 1.10 1.48 0.13
    *: by difference; daf: dry and ash free basis
    下载: 导出CSV

    表  6  HD-CF和HD-CFCr的结构参数

    Table  6  Structural parameters of HD-CF and HD-CFCr

    Structural parameter Chemical shift δ Mole percentage /%
    HD-CF HD-CFCr
    fal 0-90 74.94 76.31
    far 90-165 17.73 16.62
    fac 165-220 7.33 7.07
    fal: fraction of carbon atoms that are sp3 hybridized (aliphatic); far: fraction of carbon atoms that are sp2 hybridized (aromatic); fac: fraction of carbon atoms that are in carboxyl or carbonyl groups
    下载: 导出CSV

    表  7  HD-CF和HD-CFCr的XPS C 1s分析结果

    Table  7  XPS C 1s data of HD-CF and HD-CFCr

    Functionality Binding energy E/eV Mole content w/%
    HD-CF HD-CFCr
    C-C/C-H 284.75 68.48 76.60
    C-O/C-OH 286.15 (±0.05) 16.09 8.01
    C=O 287.45 (±0.05) 2.97 8.58
    O=C-O 288.65 (±0.05) 12.47 6.81
    下载: 导出CSV
  • [1] 王擎, 孙斌, 刘洪鹏, 柏静儒, 肖冠华.油页岩热解过程矿物质行为分析[J].燃料化学学报, 2013, 41(2):163-168. doi: 10.3969/j.issn.0253-2409.2013.02.007

    WANG Qing, SUN Bin, LIU Hong-peng, BAI Jing-ru, XIAO Guan-hua. Analysis of mineral behavior during pyrolysis of oil shale[J]. J Fuel Chem Technol, 2013, 41(2):163-168. doi: 10.3969/j.issn.0253-2409.2013.02.007
    [2] 畅志兵, 初茉, 张超, 白书霞, 林浩.桦甸油页岩热解过程中热沥青的组成变化规律[J].燃料化学学报, 2016, 44(11):1310-1317. doi: 10.3969/j.issn.0253-2409.2016.11.005

    CHANG Zhi-bing, CHU Mo, ZHANG Chao, BAI Shu-xia, LIN Hao. Variation of chemical composition of thermal bitumen during Huadian oil shale pyrolysis[J]. J Fuel Chem Technol, 2016, 44(11):1310-1317. doi: 10.3969/j.issn.0253-2409.2016.11.005
    [3] ORENDT A M, PIMIENTA I S, BADU S R, SOLUM M S, PUGMIRE R J, FACELLI J C, WINANS R E. Three-dimensional structure of the Siskin Green River Oil Shale Kerogen Model:A comparison between calculated and observed properties[J]. Energy Fuels, 2013, 27(2):702-710. doi: 10.1021/ef3017046
    [4] GUAN X H, LIU Y, WANG D, WANG Q, CHI M S, LIU S, LIU C G. Three-dimensional structure of a huadian oil shale kerogen model:An experimental and theoretical study[J]. Energy Fuels, 2015, 29(7):4122-4136. doi: 10.1021/ef502759q
    [5] 王擎, 许祥成, 迟铭书, 张宏喜, 崔达, 柏静儒.干酪根组成结构及其热解生油特性的红外光谱研究[J].燃料化学学报, 2015, 43(10):1158-1166. doi: 10.3969/j.issn.0253-2409.2015.10.002

    WANG Qing, XU Xiang-cheng, CHI Ming-shu, ZHANG Hong-xi, CUI Da, BAI Jing-ru. FT-IR study on composition of oil shale kerogen and its pyrolysis oil generation characteristics[J]. J Fuel Chem Technol, 2015, 43(10):1158-1166. doi: 10.3969/j.issn.0253-2409.2015.10.002
    [6] TONG J H, HAN X X, WANG S, JIANG X M. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD)[J]. Energy Fuels, 2011, 25(9):4006-4013. doi: 10.1021/ef200738p
    [7] WANG Q, HOU Y C, WU W Z, YU Z, REN S H, LIU Q Y, LIU Z Y. A study on the structure of Yilan oil shale kerogen based on its alkali-oxygen oxidation yields of benzene carboxylic acids, 13C NMR and XPS[J]. Fuel Process Technol, 2017, 166:30-40. doi: 10.1016/j.fuproc.2017.05.024
    [8] 畅志兵, 初茉, 张超, 白书霞, 林浩, 马良博.固有碳酸盐和硅酸盐对太姥油页岩热解产物的影响[J].化工学报, 2017, 68(4):1582-1589. http://d.old.wanfangdata.com.cn/Periodical/hgxb201704038

    CHANG Zhi-bing, CHU Mo, ZHANG Chao, BAI Shu-xia, LIN Hao, MA Liang-bo. Influence of inherent carbonates and silicates on pyrolytic products of Tailao oil shale[J]. J Chem Ind Eng (China), 2017, 68(4):1582-1589. http://d.old.wanfangdata.com.cn/Periodical/hgxb201704038
    [9] BALLICE L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale[J]. Fuel Process Technol, 2005, 86(6):673-690. doi: 10.1016/j.fuproc.2004.07.003
    [10] ZHAO X S, ZHANG X L, LIU Z Y, LU Z H, LIU Q Y. Organic matter in Yilan oil shale:Characterization and pyrolysis with or without inorganic minerals[J]. Energy Fuels, 2017, 31(4):3784-3792. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025855287/
    [11] YVRVM Y, DROR Y, LEVY M. Effect of acid dissolution on the mineral matrix and organic matter of Zefa Efe oil shale[J]. Fuel Process Technol, 1985, 11(1):71-86. http://www.sciencedirect.com/science/article/pii/0378382085900177
    [12] 迟铭书, 王擎, 李松阳, 刘奇, 查伯宇.酸洗对桦甸油页岩矿物质以及有机结构的影响[J].燃料化学学报, 2017, 45(12):1424-1433. doi: 10.3969/j.issn.0253-2409.2017.12.003

    CHI Ming-shu, WANG Qing, LI Song-yang, LIU Qi, CHA Bo-yu. Influence of demineralization on minerals and organic structure in Huadian oil shale[J]. J Fuel Chem Technol, 2017, 45(12):1424-1433. doi: 10.3969/j.issn.0253-2409.2017.12.003
    [13] LARSEN J W, PAN C S, SHAWVER S. Effect of demineralization on the macromolecular structure of coals[J]. Energy Fuels, 1989, 3(5):557-561. doi: 10.1021/ef00017a004
    [14] GAI R H, JIN L J, ZHANG J B, WANG J Y, HU H Q. Effect of inherent and additional pyrite on the pyrolysis behavior of oil shale[J]. J Anal Appl Pyrolysis, 2014, 105:342-347. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=61f70b2f5941d1bf79c4ae5456c1fb22
    [15] NEWTON R J, BOTTRELL S H, DEAN S P, HATFIELD D, RAISWELL R. An evaluation of the use of the chromous chloride reduction method for isotopic analyses of pyrite in rocks and sediment[J]. Chem Geol, 1995, 125(3/4):317-320. https://www.sciencedirect.com/science/article/abs/pii/0009254195000987
    [16] CANFIELD D E, RAISWELL R, WESTRICH J T, REAVES C M, BERNER R A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[J]. Chem Geol, 1986, 54(1/2):149-155. doi: 10.1016-0009-2541(86)90078-1/
    [17] ACHOLLA F V, ORR W L. Pyrite removal from kerogen without altering organic matter:The chromous chloride method[J]. Energy Fuels, 1993, 7(3):406-410. doi: 10.1021/ef00039a012
    [18] GALUKHIN A, GERASIMOV A, NIKOLAEV I, NOSOV R, OSIN Y. Pyrolysis of Kerogen of Bazhenov Shale:Kinetics and influence of inherent pyrite[J]. Energy Fuels, 2017, 31(7):6777-6781.
    [19] 周扬.依兰油页岩分级萃取物的结构研究[D].黑龙江: 黑龙江科技学院, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10219-1011215358.htm

    ZHOU Yang. Study on the structures of sequential extraction of Yi-lan oil-shale[D]. Heilongjiang: Heilongjiang University of Science and Technology, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10219-1011215358.htm
    [20] LIU Q, HOU Y C, WU W Z, WANG Q, REN S H, LIU Q Y. New insight into the chemical structures of Huadian kerogen with supercritical ethanolysis:Cleavage of weak bonds to small molecular compounds[J]. Fuel Process Technol, 2018, 176:138-145. doi: 10.1016/j.fuproc.2018.03.029
    [21] 柏静儒, 王擎, 魏艳珍, 关晓辉.桦甸油页岩的酸洗脱灰[J].中国石油大学学报(自然科学版), 2010, 34(2):150-153. doi: 10.3969/j.issn.1673-5005.2010.02.030

    BAI Jing-ru, WANG Qing, WEI Yan-zhen, GUAN Xiao-hui. Acid treatment de-ashing of Huadian oilshal[J]. J China Univ Pet (Nat Sci Ed), 2010, 34(2):150-153. doi: 10.3969/j.issn.1673-5005.2010.02.030
    [22] CHANG Z B, CHU M, ZHANG C, BAI S X, LIN H, MA L B. Influence of inherent mineral matrix on the product yield and characterization from Huadian oil shale pyrolysis[J]. J Anal Appl Pyrolysis, 2018, 130:269-276. doi: 10.1016/j.jaap.2017.12.022
    [23] VANDENBROUCKE M, LARGEAU C. Kerogen origin, evolution and structure[J]. Org Geochem, 2007, 38(5):719-833. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028056181/
    [24] 张晓亮.油页岩有机质结构组成及其热断裂行为研究[D].北京: 北京化工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10010-1015723645.htm

    ZHANG Xiao-liang. Study on sturcture composition and thermal fracture behavior of oil shale organic matter[D]. Beijing: Beijing University of Chemical Technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10010-1015723645.htm
    [25] ABOULKAS A, EL HARFI K. Effects of acid treatments on Moroccan Tarfaya oil shale and pyrolysis of oil shale and their kerogen[J]. J Fuel Chem Technol, 2009, 37(6):659-667. doi: 10.1016/S1872-5813(10)60013-8
    [26] 刘建忠, 齐庆杰, 周俊虎, 曹欣玉, 岑可法.煤中氟化物在燃烧产物中的分布特征[J].环境科学, 2003, 24(4):127-130. doi: 10.3321/j.issn:0250-3301.2003.04.025

    LIU Jian-zhong, QI Qing-jie, ZHOU Jun-hu, CAO Xin-yu, CEN Ke-fa. Distribution of fluoride in the combustion products of coal[J]. Environ Sci, 2003, 24(4):127-130. doi: 10.3321/j.issn:0250-3301.2003.04.025
    [27] 蒋旭光, 徐旭, 严建华, 何杰, 池涌, 岑可法.煤燃烧过程中氯析出特性的试验研究[J].煤炭学报, 2002, 27(4):398-401. doi: 10.3321/j.issn:0253-9993.2002.04.014

    JIANG Xu-guang, XU Xu, YAN Jian-hua, HE Jie, CHI Yong, CEN Ke-fa. Experimental study on the release characteristic of chlorine in coal combustion process[J]. J China Coal Soc, 2002, 27(4):398-401. doi: 10.3321/j.issn:0253-9993.2002.04.014
    [28] GELINAS Y, BALDOCK J A, HEDGES J I. Demineralization of marine and freshwater sediments for CP/MAS 13C NMR analysis[J]. Org Geochem, 2001, 32(5):677-693. doi: 10.1016/S0146-6380(01)00018-3
    [29] ZHAO X S, LIU Z Y, LU Z H, SHI L, LIU Q Y. A study on average molecular structure of eight oil shale organic matters and radical information during pyrolysis[J]. Fuel, 2018, 219:399-405. doi: 10.1016/j.fuel.2018.01.046
    [30] HILLIER J L, FLETCHER T H, SOLUM M S, PUGMIRE R J. Characterization of macromolecular structure of pyrolysis products from a Colorado Green River oil shale[J]. Ind Eng Chem Res, 2013, 52(44):15522-15532. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=03237402c85d458cbb882a4130fdadb3
    [31] KOSATEVA A, STEFANOVA M, MARINOV S, CZECH J, CARLEER R, YPERMAN J. Characterization of organic components in leachables from Bulgarian lignites by spectroscopy, chromatography and reductive pyrolysis[J]. Int J Coal Geol, 2017, 183:100-109. doi: 10.1016/j.coal.2017.10.005
    [32] LI Q Y, HAN X X, LIU Q Q, JIANG X M. Thermal decomposition of Huadian oil shale. Part 1. Critical organic intermediates[J]. Fuel, 2014, 121:109-116. doi: 10.1016/j.fuel.2013.12.046
    [33] 石剑, 李术元, 马跃.爱沙尼亚油页岩及其热解产物的电子顺磁共振研究[J].燃料化学学报, 2018, 46(1):1-7. doi: 10.3969/j.issn.0253-2409.2018.01.001

    SHI Jian, LI Shu-yuan, MA Yue. Electron paramagnetic resonance (EPR) properties of Estonia oil shale and its pyrolysates[J]. J Fuel Chem Technol, 2018, 46(1):1-7. doi: 10.3969/j.issn.0253-2409.2018.01.001
    [34] PAN L W, DAI F Q, HUANG J N, LIU S, LI G Q. Study of the effect of mineral matters on the thermal decomposition of Jimsar oil shale using TG-MS[J]. Thermochim Acta, 2016, 627:31-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49b42da1b671a61ba510f15fa6c1cbbd
    [35] TORRENTE M C, GALAN M A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain)[J]. Fuel, 2001, 80(3):327-334. doi: 10.1016/S0016-2361(00)00101-0
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  55
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 修回日期:  2018-12-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-02-10

目录

    /

    返回文章
    返回