留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低排放燃煤机组固相产物中Cr和As的赋存形态和浸出特性

崔向峥 魏书洲 张军峰 赵永椿 张军营 郑楚光

崔向峥, 魏书洲, 张军峰, 赵永椿, 张军营, 郑楚光. 超低排放燃煤机组固相产物中Cr和As的赋存形态和浸出特性[J]. 燃料化学学报(中英文), 2020, 48(12): 1506-1512.
引用本文: 崔向峥, 魏书洲, 张军峰, 赵永椿, 张军营, 郑楚光. 超低排放燃煤机组固相产物中Cr和As的赋存形态和浸出特性[J]. 燃料化学学报(中英文), 2020, 48(12): 1506-1512.
CUI Xiang-zheng, WEI Shu-zhou, ZHANG Jun-feng, ZHAO Yong-chun, ZHANG Jun-ying, ZHENG Chu-guang. State and leaching characteristics of Cr and As in the solid phase products of ultra-low emission coal-fired units[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1506-1512.
Citation: CUI Xiang-zheng, WEI Shu-zhou, ZHANG Jun-feng, ZHAO Yong-chun, ZHANG Jun-ying, ZHENG Chu-guang. State and leaching characteristics of Cr and As in the solid phase products of ultra-low emission coal-fired units[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1506-1512.

超低排放燃煤机组固相产物中Cr和As的赋存形态和浸出特性

基金项目: 

国家重点研发计划项目 2018YFB0605104

国家自然科学基金 42030807

湖北省重点研发计划项目 2020BCA076

详细信息
  • 中图分类号: TK16

State and leaching characteristics of Cr and As in the solid phase products of ultra-low emission coal-fired units

Funds: 

the National R & D Program Project of China 2018YFB0605104

the National Natural Science Fundation of China 42030807

the Key Research and Development Program of Hubei Province 2020BCA076

More Information
  • 摘要: 针对燃煤电厂超低排放机组,研究了固相产物中的铬和砷两种痕量元素的含量及其赋存和浸出特性。结果表明,超低排放机组飞灰中铬和砷含量均高于底渣。对于飞灰,1#、2#、3#机组铬和砷占比最大的形态分别为可交换态和可氧化态,而4#机组铬和砷占比最大的形态均为残渣态。砷的浸出量低于地下水环境标准(GB 14848—2017)中规定的0.01 mg/L,而2#和3#机组飞灰中铬的浸出量高于排放限值,应予以高度关注。
  • 图  1  BCR顺序提取的操作过程

    Figure  1  Operation process of BCR sequential extraction procedures

    图  2  底渣中Cr含量

    Figure  2  Cr content in bottom slag

    图  3  飞灰中Cr含量

    Figure  3  Cr content in fly ash

    图  4  底渣中As含量

    Figure  4  As content in bottom slag

    图  5  飞灰中As含量

    Figure  5  As content in fly ash

    图  6  Cr在底渣中各化学结合态的对比

    Figure  6  Comparison of chemical binding states of Cr in bottom slag

    图  7  As在底渣中各化学结合态的对比

    Figure  7  Comparison of the chemical binding states of As in bottom slag

    图  8  Cr在飞灰中各化学结合态的对比

    Figure  8  Comparison of chemical binding states of Cr in fly ash

    图  9  As在飞灰中各化学结合态的对比

    Figure  9  Comparison of chemical binding states of As in fly ash

    图  10  Cr在底渣中的浸出量

    Figure  10  Leaching concentration of Cr in bottom slag

    图  11  Cr在飞灰中的浸出量

    Figure  11  Leaching concentration of Cr in fly ash

    图  12  As在底渣中的浸出量

    Figure  12  Leaching concentration of As in bottom slag

    图  13  As在飞灰中的浸出量

    Figure  13  Leaching concentration of As in fly ash

  • [1] 吴达.我国煤炭产业供给侧改革与发展路径研究[D].北京: 中国地质大学, 2016.

    WU Da. Research on the supply-side reform and development path of my country's coal industry[D]. Beijing: China University of Geosciences, 2016.
    [2] LI S, GAO L, JIN H G. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China[J]. Energy Convers Manage, 2016, 112: 91-100.
    [3] KIEBER R J, WILLEY J D, ZVALAREN S D. Chromium speciation in rainwater: Temporal variability and atmospheric deposition[J]. Environ Sci Technol, 2002, 36(24): 5321-5327.
    [4] COSTA M. Toxicity and carcinogenicity of Cr (VI) in animal models and humans[J]. Crit Rev Toxicol, 1997, 27(5): 431-442.
    [5] WANG J W, ZHANG Y S, LIU Z, NORRIS P, ROMERO C E, XU H, PAN W P. Effect of coordinated air pollution control devices in coal-fired power plants on Arsenic emissions[J]. Energy Fuels, 2017, 31(7): 7309-7316.
    [6] 龚泓宇, 胡红云, 刘慧敏, 李帅, 黄永达, 付彪, 罗光前, 姚洪.燃煤过程中砷的迁移转化及控制技术综述[J/OL].中国电机工程学报, 2020, 1-18.

    GONG Hong-yu, HU Hong-yun, LIU Hui-min, LI Shuai, HUANG Yong-da, FU Biao, LUO Guang-qian, YAO Hong. Overview of arsenic migration and transformation and control technology during coal combustion[J/OL]. Proceedings of the CSEE, 2020, 1-18.
    [7] DAI S F, REN D Y, CHOU C L, FINKELMAN R B, SEREDIN V V, ZHOU Y P. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. Int J Coal Geol, 2012, 94: 3-21.
    [8] WANG C B, LIU H M, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies[J]. Prog Energy Combust Sci, 2018, 68: 1-28.
    [9] 李立园.燃煤过程中铬的赋存和演化规律研究[D].安徽: 安徽大学, 2018.

    LI Li-yuan. Study on the occurrence and evolution of chromium during coal combustion[D]. Anhui: Anhui University, 2018.
    [10] COSTA M, KLEIN C B. Toxicity and carcinogenicity of chromium compounds in humans[J]. Crit Rev Toxicol, 2006, 36(2): 155-163.
    [11] ASSIS R C, FARIA B A A, CALDEIRA C L, MAGESTE A B, LEMOS L R, RODRIGUES G D. Extraction of arsenic(Ⅲ) in aqueous two-phase systems: A new methodology for determination and speciation analysis of inorganic arsenic[J]. Microchem J, 2019, 147: 429-436.
    [12] GUO M H, LI J, FAN S J, LIU W S, WANG B, GAO C L, ZHOU J, HAI X. Speciation analysis of arsenic in urine samples from APL patients treated with single agent As2O3 by HPLC-HG-AFS[J]. J Pharm Biomed Anal, 2019, 171: 212-217.
    [13] IGNACIO M, VALERY B, NELLY M. Total arsenic and inorganic arsenic speciation in groundwater intended for human consumption in Uruguay: Correlation with fluoride, iron, manganese and sulfate[J]. Sci Total Environ, 2019, 681: 497-502.
    [14] 赵士林, 段钰锋, 周强, 张君, 杜鸿飞, 汤红健, 吕剑虹.燃煤循环流化床痕量元素排放特性试验研究[J].中国电机工程学报, 2017, 37(1): 193-200.

    ZHAO Shi-lin, DUAN Yu-feng, ZHOU Qiang, ZHANG Jun, DU Hong-fei, TANG Hong-jian, LV Jian-hong. Experimental study on trace element emission characteristics of coal-fired circulating fluidized bed[J]. Proc CSEE, 2017, 37(1): 193-200.
    [15] 吕海亮, 陈皓侃, 李文, 李保庆.铁岭煤中重金属元素的赋存形态及其在热解过程中的挥发行为研究[J].燃料化学学报, 2004, 32(2): 140-145.

    LV Hai-liang, CHEN Hao-kan, LI Wen, LI Bao-qing. The occurrence of heavy metal elements in Tieling coal and their volatilization behavior during pyrolysis[J]. J Fuel Chem Technol, 2004, 32(2): 140-145.
    [16] YAN R, GAUTHIER D, FLAMANT G. Volatility and chemistry of trace elements in a coal combustor[J]. Fuel, 2001, 80(15): 2217-2226.
    [17] TANG Q, LIU G J, ZHOU C C, SUN R Y. Distribution of trace elements in feed coal and combustion residues from two coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 2013, 107: 315-322.
    [18] 宋党育, 张军营, 郑楚光.贵州省煤中有害微量元素的地球化学特性[J].煤炭转化, 2007, 30(4): 13-17.

    SONG Dang-yu, ZHANG Jun-ying, ZHENG Chu-guang. Geochemical characteristics of harmful trace elements in coal in Guizhou Province[J]. Coal Convers, 2007, 30(4):13-17.
    [19] 张振桴, 樊金串.小龙潭褐煤中砷, 铅, 铬等元素的结合状态[J].煤炭转化, 1993, 16(2): 86-89.

    ZHANG Zhen-fu, FAN Jin-chuan. The combined state of arsenic, lead, chromium and other elements in Xiaolongtan lignite[J]. Coal Convers, 1993, 16(2): 86-89.
    [20] ZHAO S L, DUAN Y F, LU J C, GUPTA R, PUDASAINEE D, LIU S, LIU M, LU J H. Thermal stability, chemical speciation and leaching characteristics of hazardous trace elements in FGD gypsum from coal-fired power plants[J]. Fuel, 2018, 231: 94-100.
    [21] 孙喆.燃煤电站砷、铅、镉、铬的迁移规律[D].北京: 华北电力大学, 2015.

    SUN Zhe. Migration law of arsenic, lead, cadmium and chromium in coal-fired power stations[D]. Beijing: North China Electric Power University, 2015.
    [22] VEJAHATI F, XU Z H, GUPTA R. Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization-A review[J]. Fuel, 2009, 89(4): 904-911.
    [23] ZHAO Y C, ZHANG J Y, ZHENG C G. Release and removal using sorbents of chromium from a high-Cr lignite in Shenbei coalfield, China[J]. Fuel, 2013, 109: 86-93.
    [24] MIHONE K M, HANA F, SANDA R, LIDIJA Ć. Assessment of metal risks from different depths of jarosite tailing waste of Trepça Zinc Industry, Kosovo based on BCR procedure[J]. J Geochem Explor, 2015, 148: 161-168.
    [25] 史燕红.燃煤电厂重金属排放与控制研究[D].北京: 华北电力大学, 2016.

    SHI Yan-hong. Research on Heavy Metal Emissions and Control of Coal-fired Power Plants[D]. Beijing: North China Electric Power University, 2016.
    [26] 刘慧敏, 王春波, 张月, 孙喆, 邵欢.温度和赋存形态对燃煤过程中砷迁移和释放的影响[J].化工学报, 2015, 66(11): 4643-4651.

    LIU Hui-min, WANG Chun-bo, ZHANG Yue, SUN Zhe, SHAO Huan. Effects of temperature and occurrence form on the migration and release of arsenic during coal combustion[J]. CIESC J, 2015, 66(11): 4643-4651.
    [27] GB 14848—2017, 地下水环境质量标准[S].

    GB 14848—2017, Groundwater Environmental Quality Standard[S].
    [28] 郭胜利.燃煤重金属迁移转化特征及其污染控制研究[D].重庆: 重庆大学, 2014.

    GUO Sheng-li. Study on the characteristics of coal-burning heavy metal migration and transformation and its pollution control[D]. Chongqing: Chongqing University, 2014.
    [29] 柳媛.燃煤产物中砷的分布及燃煤过程中砷的析出规律研究[D].辽宁: 辽宁工程技术大学, 2013.

    LIU Yuan. Study on the distribution of arsenic in coal combustion products and the arsenic precipitation law during coal combustion[D]. Liaoning: Liaoning Technical University, 2013.
  • 加载中
图(14)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  77
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-18
  • 修回日期:  2020-10-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-12-10

目录

    /

    返回文章
    返回