留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C6H2(OH)3CH3氧化成羟基苯甲酸反应路径的DFT研究

周建 冉景煜 张力

周建, 冉景煜, 张力. C6H2(OH)3CH3氧化成羟基苯甲酸反应路径的DFT研究[J]. 燃料化学学报(中英文), 2018, 46(2): 189-197.
引用本文: 周建, 冉景煜, 张力. C6H2(OH)3CH3氧化成羟基苯甲酸反应路径的DFT研究[J]. 燃料化学学报(中英文), 2018, 46(2): 189-197.
ZHOU Jian, RAN Jing-yu, ZHANG Li. A DFT study on the reaction pathway for the oxidation of C6H2(OH)3CH3 to hydroxyl benzoic acid[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 189-197.
Citation: ZHOU Jian, RAN Jing-yu, ZHANG Li. A DFT study on the reaction pathway for the oxidation of C6H2(OH)3CH3 to hydroxyl benzoic acid[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 189-197.

C6H2(OH)3CH3氧化成羟基苯甲酸反应路径的DFT研究

详细信息
  • 中图分类号: TK6

A DFT study on the reaction pathway for the oxidation of C6H2(OH)3CH3 to hydroxyl benzoic acid

More Information
  • 摘要: 运用密度泛函(DFT)理论,采用Materials Studio 8.0,用GGA/BP方法研究了C6H2(OH)3CH3氧化成羟基苯甲酸的反应路径。结果表明,甲基上的氢原子被氧化成羟基以及羟基被氧化为醛基及醛基被氧化成羧基均为放热过程。分子C6H2(OH)3CH3中甲基氧化成羧基的主路径为三个氢原子氧化反应路径,其路径为C6H2(OH)3CH3+3O→C6H2(OH)3C(OH)3→C6H2(OH)3COOH+H2O,该路径受限于羟基直接被氧化成羧基过程,需克服130 kJ/mol的反应势垒,反应速率常数对数ln(k)为-22.96 s-1;醛基、羟基优先被氧化成羧基的顺序为:-CHO > -C(OH)3 > -HC(OH)2 > -H2C(OH);提高反应温度、氧气浓度均有利于羟基苯甲酸的生成,适当的催化剂有利于促进整个反应的进行。
  • 图  1  人工合成苯羧酸的氧化机理示意图

    Figure  1  Mechanism for the oxidation of benzene carboxylic acid

    图  2  甲苯与丙基苯结构

    Figure  2  Toluene and propylbenzene

    图  3  褐煤的分子结构

    Figure  3  Molecular structure of lignite

    图  4  A和B的分子结构

    Figure  4  Molecular structure of A and B from the hydrolysis of lignite

    图  5  C6H2(OH)3CH3和C6H4OHCH2CH2OH结构

    Figure  5  C6H2(OH)3CH3 and C6H4OHCH2CH2OH

    图  6  甲烷氧化成水和二氧化碳的反应过程示意图

    Figure  6  Reaction process for the oxidation of methane to water and carbon dioxide

    图  7  甲基上单个氢原子被氧化成羟基过程中键长的变化

    Figure  7  Changes of bond length during the oxidation hydrogen in methyl to hydroxyl

    图  8  羟基被氧化成醛基过程中键长的变化

    Figure  8  Changes of bond length during the further oxidation of hydroxyl to aldehyde

    图  9  醛基被氧化成羧基过程中键长的变化

    Figure  9  Changes of bond length during the oxidation of aldehyde to carboxyl

    图  10  单个氢原子氧化反应的反应势垒

    Figure  10  Energy barrier of a single hydrogen atom oxidation reaction

    图  11  甲基上两个氢原子先后被氧化成羟基、醛基过程中键长的变化

    Figure  11  Changes of bond length during the oxidation of two hydrogen atoms into hydroxyl and aldehyde

    图  12  醛基被氧化成羧基过程中键长的变化

    Figure  12  Changes of bond length during further oxidation of aldehyde to carboxyl

    图  13  两个氢原子氧化反应的反应势垒

    Figure  13  Energy barrier of two hydrogen atom oxidation reaction

    图  14  甲基上三个氢原子先后被氧化成羟基、羧基过程中键长的变化

    Figure  14  Changes of bond length during the oxidation of three hydrogen atoms to hydroxyl and carboxyl

    图  15  三个氢原子氧化反应的反应势垒

    Figure  15  Energy barrier of three hydrogen atom oxidation reaction

    表  1  反应物、中间体、过渡态及生成物的总能量,过渡态频率、反应能量、反应势垒及反应速率常数

    Table  1  Total energies of reactants, products, intermediate, and transition states; frequency of transition states; reaction energies, energy barrier, and reaction rate constant

    Total energies
    E/Ha
    Frequency of transition
    states /cm-1
    Reaction energies
    Ee/(kJ·mol-1)
    Energy barrier
    Eb/(kJ·mol-1)
    Reaction rate constant
    ln(k)/s-1
    IM0 -572.4485192
    TS0-1 -572.4476524 -124.77 -452.010 2.276 28.539
    IM1 -572.6206809
    IM1A -572.6206558
    TS1A-2 -572.4952856 -1526.41 -9.791 142.352 -27.970
    IM2 -572.5993533
    IM2A -646.7025609
    TS2A-3 -646.6834768 -647.04 -2.402 50.103 9.245
    IM3 -646.7034749
    下载: 导出CSV

    表  2  反应物、中间体、过渡态及生成物的总能量、过渡态频率、反应能量、反应势垒及反应速率常数

    Table  2  Total energies of reactants, products, intermediate, and transition states; frequency of transition states; reaction energies, energy barrier, and reaction rate constant

    Total energies
    E/Ha
    Frequency of transition
    states /cm-1
    Reaction energies
    Ee/(kJ·mol-1)
    Energy barrier
    Eb/(kJ·mol-1)
    Reaction rate constant
    ln(k) /s-1
    IM0 -647.8643879
    TS0-1 -647.6631287 -1381.09 -33.962 528.406 -183.711
    IM1 -647.8773231
    TS1-2 -647.8250685 -1574.66 -25.383 137.193 -25.889
    IM2 -647.8869909
    IM2A -646.7025609
    TS2A-3 -646.6834768 -647.04 -2.402 50.103 9.245
    IM3 -646.7034749
    下载: 导出CSV

    表  3  反应物、中间体、过渡态及生成物的总能量、过渡态频率、反应能量、反应势垒及反应速率常数

    Table  3  Total energies of reactants, products, intermediate, and transition states, frequency of transition states, reaction energies, energy barrier, and reaction rate constant

    Total energies
    E/Ha
    Frequency of transition
    states /cm-1
    Reaction energies
    Ee/(kJ·mol-1)
    Energy barrier
    Eb/(kJ·mol-1)
    Reaction rate constant
    ln(k) /s-1
    IM0 -723.1418687
    TS0-1 -723.1363946 -104.99 -2.774 14.372 23.659
    IM1 -723.1429255
    TS1-2 -723.0934644 -1327.50 -62.560 129.859 -22.930
    IM2 -723.1667535
    下载: 导出CSV
  • [1] 高建业.煤液化燃料替代石油的开发应用[J].煤气与热力, 2007, 27(1):37-43. http://d.old.wanfangdata.com.cn/Periodical/mqyrl200701011

    GAO Jian-ye. The development of alternative fuels for coal liquefaction fuels[J]. Gas Heat, 2007, 27(1):37-43. http://d.old.wanfangdata.com.cn/Periodical/mqyrl200701011
    [2] SIMSEK E H, KARADUMAN A, OLCAY A. Liquefaction of turkish coals in tetralin with microwaves[J]. Fuel Process Technol, 2001, 73(2):111-125 doi: 10.1016/S0378-3820(01)00196-5
    [3] AMESTICA L A, WOLF E E. Catalytic liquefaction of coal with supercritical water/CO/solvent media[J]. Fuel, 1986, 65(9):1226-1233 doi: 10.1016/0016-2361(86)90234-6
    [4] 王春萍.我国煤液化概况[J].化学工程师, 2005, 19(12):40-41. doi: 10.3969/j.issn.1002-1124.2005.12.016

    WANG Chun-ping. General situation of coal liquefaction in china[J]. Chem Eng, 2005, 19(12):40-41. doi: 10.3969/j.issn.1002-1124.2005.12.016
    [5] ESPINOZA R L, STEYNBERG A P, JAGER B, VOSLOO A C. Low temperature Fischer-Tropsch synthesis from a sasol perspective[J]. Appl Catal A:Gen, 1999, 186(1/2):13-26. https://www.sciencedirect.com/science/article/pii/S0926860X99001611
    [6] STEYNBERG A P, ESPINOZA R L, JAGER B, VOSLOO A C. High temperature Fischer-Tropsch synthesis in commercial practice[J]. Appl Catal A:Gen, 1999, 186(1/2):41-54. https://www.sciencedirect.com/science/article/pii/S0926860X99001635
    [7] 吴春来.南非SASOL的煤炭间接液化技术[J].煤化工, 2003, (2):3-6. http://www.wenkuxiazai.com/doc/c0b84a6c1eb91a37f1115cff-4.html

    WU Chun-lai. Coal indirect liquefaction technology of south africa's SASOL[J]. Coal Chem Ind, 2003, (2):3-6. http://www.wenkuxiazai.com/doc/c0b84a6c1eb91a37f1115cff-4.html
    [8] VAN WECHEM V M H, SENDEN M M G. Conversion of natural gas to transportation fuels via the shell middle distillate synthesis process (SMDS)[J]. Catal Today, 1991, 8(3):43-71. https://www.sciencedirect.com/science/article/pii/S0167299108638483
    [9] 相宏伟, 唐宏青, 李永旺.煤化工工艺评述与展望Ⅳ.煤间接液化技术[J].燃料化学学报, 2001, 29(4):289-298. http://www.cqvip.com/qk/90650X/200104/5489359.html

    XIANG Hong-wei, TANG Hong-qing, LI Yong-wang. Review and prospect of coal chemical technologyⅣ.Coal indirect liquefaction technology[J]. J Fuel Chem Technol, 2001, 29(4):289-298. http://www.cqvip.com/qk/90650X/200104/5489359.html
    [10] LIU Z X, LIU Z C. GC/MS analysis of water-soluble products from the mild oxidation of longkou brown coal with H2O2[J]. Energy Fuels, 2003, 17(2):424-426. doi: 10.1021/ef020071e
    [11] KOUICHI M, KAZUHIRO M. New oxidative degradation method for producing fatty acids in hgh yields and high selectivity from low-rank coals[J]. Energy Fuels, 1996, 10(6):1196-1201. https://www.sciencedirect.com/science/article/pii/S0016236114011211
    [12] JUN-ICHIRO H. Depolymerization of lower rank coals by low-temperature O2 oxidation[J]. Energy Fuels, 1997, 11(1):227-235. doi: 10.1021/ef960104o
    [13] KAZUHIRO M. Extraction of low-rank coals oxidized with hydrogen peroxide in conventionally used solvents at room temperature[J]. Energy Fuels, 1997, 11(4):825-831. doi: 10.1021/ef960225o
    [14] 冯波, 其鲁, 张敬华.弱氧化环境下褐煤氧化产物的定性分析[J].冶金分析, 2009, 29(1):21-24. doi: 10.3969/j.issn.1000-7571.2009.01.005

    FENG Bo, QI Lu, ZHANG Jing-hua. Qualitative and metallurgical analysis of lignite oxidation products in weak oxidized environment[J]. Metall Anal, 2009, 29(1):21-24. doi: 10.3969/j.issn.1000-7571.2009.01.005
    [15] YANG F, HOU Y, WU W, WANG Q, NIU M G, REN S H. The relationship between benzene carboxylic acids from coal via selective oxidation and coal rank[J]. Fuel Process Technol, 2017, 160:207-215. doi: 10.1016/j.fuproc.2017.02.035
    [16] WANG W, HOU Y, NIU M, WU T, WU W Z. Production of benzene polycarboxylic acids from bituminous coal by alkali-oxygen oxidation at high temperatures[J]. Fuel Process Technol, 2013, 110(6):184-189. https://www.sciencedirect.com/science/article/pii/S0378382012004584
    [17] 赵宇薇. 褐煤碱-氧氧化的产物分析及其结构的基础研究[D]. 北京: 北京化工大学, 2015. http://d.wanfangdata.com.cn/Thesis/Y2862009

    ZHAO Yu-wei. Product and structure analysis of basic research for lignite oxidation in oxygen alkaline environment[D]. Beijing: Beijing University of Chemical Technology, 2015. http://d.wanfangdata.com.cn/Thesis/Y2862009
    [18] 汪文化. 煤炭、生物质选择性催化氧化制备化学品的研究[D]. 北京: 北京化工大学, 2013.

    WANG Wen-hua. The research of selective catalytic oxidation for preparation chemicals by coal and biomass[D]. Beijing: Beijing University of Chemical Technology, 2013.
    [19] YANG F, HOU Y, WU W, WANG Q. A new insight into the structure of Huolinhe lignite based on the yields of benzene carboxylic acids[J]. Fuel, 2017, 189:408-418.
    [20] 吴桐. 多种煤碱氧化制备苯羧酸及其产物分离的研究[D]. 北京: 北京化工大学, 2014.

    WU Tong. The study of preparation of Benzene carboxylic acid and its separation by kinds of coal oxidation in oxygen alkaline[D]. Beijing: Beijing University of Chemical Technology, 2014.
    [21] WANG W, HOU Y, WU W, NIU M G. Simultaneous production of small-molecule fatty acids and benzene polycarboxylic acids from lignite by alkali-oxygen oxidation[J]. Fuel Process Technol, 2013, 112(4):7-11. https://www.sciencedirect.com/science/article/pii/S0378382013000623
    [22] 朱培之, 高晋生.煤化学[M].上海:上海科技出版社. 1984.

    ZHU Pei-zi, GAO Jin-shen. Coal Chemistry[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1984.
    [23] 虞继舜.煤化学[M].北京:冶金工业出版社. 2000.

    YU Ji-shun. Coal Chemistry[M]. Beijing:Metallurgical Industry Press, 2000.
    [24] QI W, RAN J, WANG R, SHI J, DU X S, RAN M C. Kinetic mechanism of effects of hydrogen addition on methane catalytic combustion over Pt(111) surface:A DFT study with cluster modeling[J]. Comput Mater Sci, 2016, 111:430-442. doi: 10.1016/j.commatsci.2015.09.002
    [25] JAMES O O, MANDAL S, ALELE N, CHOWDHURY B, MAITY S. Lower alkanes dehydrogenation:Strategies and reaction routes to corresponding alkenes[J]. Fuel Process Technol, 2016, 149:239-255. doi: 10.1016/j.fuproc.2016.04.016
    [26] DELLEY B. From molecules to solids with the DMol3 approach[J]. J Chem Phys, 2000, 113(18):7756-7764. doi: 10.1063/1.1316015
    [27] PERDEW J P, CHEVARY J A, VOSKO S H, PEDERSON M R, SINGH D J, PHYS F C. Erratum:Atoms, Molecules, Solids, And Surfaces:Applications of the Generalized Gradient Approximation for Exchange and Correlation[M]. Phys Rev B:Condens Matter, 1993.
    [28] WANG B, WEI X, XIE K. Study on reaction of N-methyl-2-pyrrolidinone with carbon disulfide using density functional theory[J]. J Chem Ind Eng, 2004, 55(4):569-574.
    [29] CLEMENS A H, MATHESON T W, ROGERS D E. Low temperature oxidation studies of dried new zealand coals[J]. Fuel, 1991, 70(2):215-221. doi: 10.1016/0016-2361(91)90155-4
    [30] GUO W, TIAN W Q, LIAN X, LIU F L, ZHOU M, XIAO P, ZHANG Y H. A comparison of the dominant pathways for the methanol dehydrogenation to CO on Pt 7, and Pt 7-x Ni x, (x=1, 2, 3) bimetallic clusters:A DFT study[J]. Comput Theor Chem, 2014, 1032(5):73-83. https://www.sciencedirect.com/science/article/pii/S036031991201837X
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  40
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-05
  • 修回日期:  2018-01-31
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-02-10

目录

    /

    返回文章
    返回