留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载体对铜基催化剂NH3-SCR低温脱硝性能的影响

张相俊 刘晓刚 李清雍 李岩 魏波 王虹 李翠清 宋永吉

张相俊, 刘晓刚, 李清雍, 李岩, 魏波, 王虹, 李翠清, 宋永吉. 载体对铜基催化剂NH3-SCR低温脱硝性能的影响[J]. 燃料化学学报(中英文), 2017, 45(2): 220-226.
引用本文: 张相俊, 刘晓刚, 李清雍, 李岩, 魏波, 王虹, 李翠清, 宋永吉. 载体对铜基催化剂NH3-SCR低温脱硝性能的影响[J]. 燃料化学学报(中英文), 2017, 45(2): 220-226.
ZHANG Xiang-jun, LIU Xiao-gang, LI Qing-yong, LI Yan, WEI Bo, WANG Hong, LI Cui-qing, SONG Yong-ji. Effect of carrier on the performance of copper based catalyst for selective catalytic reduction of NO with NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 220-226.
Citation: ZHANG Xiang-jun, LIU Xiao-gang, LI Qing-yong, LI Yan, WEI Bo, WANG Hong, LI Cui-qing, SONG Yong-ji. Effect of carrier on the performance of copper based catalyst for selective catalytic reduction of NO with NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 220-226.

载体对铜基催化剂NH3-SCR低温脱硝性能的影响

基金项目: 

国家自然科学基金 21343009, 21673290

重质油国家重点实验室开放基金 SKLHOP201501

国家级大学生创新创业训练计划项目 2016J00073

详细信息
    通讯作者:

    E-mail:wanghong@bipt.edu.cn

  • 中图分类号: O643

Effect of carrier on the performance of copper based catalyst for selective catalytic reduction of NO with NH3 at low temperature

Funds: 

National Natural Science Foundation of China 21343009, 21673290

the State Key Laboratory of Heavy Oil Processing SKLHOP201501

the National College Students Innovation and Entrepreneurship Training Program 2016J00073

  • 摘要: 采用浸渍法制备载体负载铜氧化物催化剂。通过XRD、TG-MS、XPS、NO-TPD、NH3-TPD和H2-TPR等手段对催化剂进行表征,考察了有氧条件下载体对催化剂NH3-SCR低温脱硝性能的影响。结果表明,铜物种在载体上以CuO和Cu2O形式共存,载体影响铜物种的分散性和氧化态,影响催化剂酸性、氧化还原性和对反应物的吸脱附能力。Cu/HZSM-5催化剂,铜物种分散度高,氧化还原性能好,具有适宜的酸性和酸量,对反应物有良好的吸附-脱附性能,在NH3-SCR脱硝反应中具有较好的催化活性,反应温度低,T50T90分别为137和165℃,活性窗口温度宽,NO转化率高于90%的温度为165-358℃。
  • 图  1  载体和催化剂的XRD谱图

    Figure  1  XRD patterns of the carriers and catalysts

    图  2  Cu/HZSM-5催化剂前驱体的TG-MS曲线

    Figure  2  TG-MS curves of the Cu/HZSM-5 catalyst precursor

    图  3  催化剂的Cu 2p态XPS谱图

    Figure  3  XPS spectra of Cu 2p state in the catalysts

    图  4  催化剂的O 1s态XPS谱图

    Figure  4  XPS spectra of O 1s state in the catalysts

    图  5  催化剂的NO-TPD谱图

    Figure  5  NO-TPD profiles of the catalysts

    图  6  催化剂NH3-TPD谱图

    Figure  6  NH3-TPD profiles of the catalysts

    图  7  催化剂H2-TPR谱图

    Figure  7  H2-TPR profiles of the catalysts

    图  8  催化剂的脱硝活性评价

    Figure  8  Denitration activity tests over the catalysts reaction conditions: 600 μL/L NH3 ,600 μL/L NO, 5%O2 and Ar balance; flow rate: 300 cm3/min; weight of catalyst: 0.4 g

    表  1  催化剂的XPS和BET表征

    Table  1  XPS and BET data of the catalysts

    Sample Specific surface area
    A/(m2·g-1)
    Percentage of oxygen species
    derived from O 1s analysis /%
    Binding energy
    E/eV
    Cu2+/Cu+
    Oα Oβ Cu+ Cu2+
    HZSM-5 388 73.31 26.69 - - -
    ZRP-5 360 70.24 29.76 - - -
    γ-Al2O3 294 64.05 35.95 - - -
    Cu/HZSM-5 328 76.61 23.39 932.85 934.99 0.489 7
    Cu/ZRP-5 290 71.93 28.07 932.50 934.25 0.825 2
    Cu/γ-Al2O3 249 64.82 35.18 932.95 934.65 1.023 8
    下载: 导出CSV

    表  2  催化剂上H2还原峰面积和温度

    Table  2  Peak area and peak temperature of H2 reduction with the catalysts

    Peak Area/(a.u.)(Temperature t/℃)
    Cu/HZSM-5 Cu/ZRP Cu/γ-Al2O3
    1 3.4(204) 1.7(215) 4.0(290)
    2 2.1(270) 7.4(280) 9.8(338)
    3 2.8(328) 3.5(348) 9.0(430)
    4 5.2(474) 0.75(430) 1.3(556)
    Total 13.5 13.4 24.1
    下载: 导出CSV
  • [1] 王虹, 李滨, 卢学斌, 李翠清, 丁福臣, 宋永吉. 富氧条件下Co/MOR催化剂上甲烷选择催化还原NO[J]. 燃料化学学报, 2015, 43(9):1106-1112. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18696.shtml

    (WANG Hong, LI Bin, LU Xue-bin, LI Cui-qing, DING Fu-chen, SONG Yong-ji. Selective catalytic reduction of NO by methane over the Co/MOR catalysts in the presence of oxygen[J]. J Fuel Chem Technol, 2015, 43(9):1106-1112.) http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18696.shtml
    [2] 任翠涛, 胡颖智, 魏浩宇, 李滨, 王虹, 丁福臣, 李翠清, 宋永吉. SO2存在条件下M/REY催化剂NH3选择性还原NO性能研究[J]. 燃料化学学报, 2013, 41(10):1241-1247. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18280.shtml

    (REN Cui-tao, HU Ying-zhi, WEI Hao-yu, LI Bin, WANG Hong, DING Fu-chen, LI Cui-qing, SONG Yong-ji. NH3 selective catalytic reduction of NO over M/REY catalysts in presence of SO2[J]. J Fuel Chem Technol, 2013, 41(10):1241-1247.) http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18280.shtml
    [3] PANAHI P N, SALARI D, NIAEI A, MOUSAVI S M. NO reductionover nanostructure M-Cu/ZSM-5 (M:Cr, Mn, Co and Fe)bimetallic catalysts and optimization of catalyst preparationby RSM[J]. J Ind Eng Chem, 2013, 19(6):1793-1799. doi: 10.1016/j.jiec.2013.02.022
    [4] YU T, FAN D Q, HAO T. The effect of various templates on the NH3-SCR activities over Cu/SAPO-34 catalysts[J]. J Chem Eng, 2014, 243:159-168. doi: 10.1016/j.cej.2014.01.008
    [5] LIU Q, LIU Z, SU J. Al2O3-coated cordierite honeycomb supported CuO catalyst for selective catalytic reduction of NO by NH3:Surface properties and reaction mechanism[J]. Catal Today, 2010, 158(3/4):370-376. https://www.researchgate.net/publication/289381620_Simultaneous_removal_of_SO2_and_NO_from_flue_gas_using_CuOg-Al2O3_catalyst
    [6] LEI Z G, LONG A B, JIA M R, LIU X Y. Experimental and kineticstudy of selective catalytic reduction of NO with NH3 over CuO/Al2O3/cordierite catalyst[J]. Chin J Chem Eng, 2010, 18(5):721-729. doi: 10.1016/S1004-9541(09)60120-8
    [7] VENNESTROM P N R, JANSSENS T V W, KUSTOV A, GRILL M, PUIG-MOLINA A, LUNDEGAARD L F, TIRUVALAM R R, CONCEPCION P, CORMA A. Influence of lattice stability on hydrothermal deactivation of Cu-ZSM-5 and Cu-IM-5 zeolites for selective catalytic reduction of NOx, by NH3[J]. J Catal, 2014, 309(6):477-490.
    [8] PEREDA-AYO B, DE LA TORRE U, ILLAN-GOMEZ M J, BUENO-LOPEZ A, GONZALEZ-VELASCO J R. Role of the different copper species on the activity of Cu/zeolite catalysts for SCR of NOx, with NH3[J]. Appl Catal B:Environ, 2014, 147(7):420-428.
    [9] CHEN B H, XU R N, ZHANG R D, LIU N. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx, by ammonia[J]. Environ Sci Technol, 2014, 48(23):13909-13916. doi: 10.1021/es503707c
    [10] SI Z C, WENG D, WU X D, LI J, LI G. Structure, acidity and activity of CuOx, /WOx, -ZrO2 catalyst for selective catalytic reduction of NO by NH3[J]. J Catal, 2010, 271(1):43-51. doi: 10.1016/j.jcat.2010.01.025
    [11] BONINGARI T, PAPPAS D K, ETTIREDDY P R, KOTRBA A, SMIRNIOTIS P G. Influence of SiO2 on M/TiO2 (M=Cu, Mn, and Ce) formulations for low-temperature Selective catalytic reduction of NOx, with NH3:Surface properties and key components in relation to the activity of NOx, reduction[J]. Ind Eng Chem Res, 2015, 54(8):2261-2273. doi: 10.1021/ie504709j
    [12] 王栋, 吴惊坤, 牛胜利, 路春美, 徐丽婷, 于贺伟, 李婧. Sn、Ti 掺杂改性γ, -Fe2O3催化剂结构及NH3-SCR 脱硝活性研究[J]. 燃料化学学报, 2015, 43(7):876-883. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18666.shtml

    (WANG Dong, WU Jing-kun, NIU Sheng-li, LU Chun-mei, XU Li-ting, YU He-wei, LI Jing. Structural property of γ, -Fe2O3 catalysts doped with Sn and Ti and their activity in the selective catalytic reduction of NOx, [J]. J Fuel Chem Technol, 2015, 43(7):876-883.) http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18666.shtml
    [13] YANG S J, LI J H, WANG C Z, CHEN J H, MA L, CHANG H Z, CHEN L, PENG P, YAN N Q. Fe-Ti spinel for the selective catalytic reduction of NO with NH3:Mechanism and structure-activity relationship[J]. Appl Catal B:Environ, 2012, 117-118(18):73-80. https://www.researchgate.net/publication/257370778_Fe-Ti_spinel_for_the_selective_catalytic_reduction_of_NO_with_NH3_Mechanism_and_structure-activity_relationship
    [14] MOUSAVI S M, NIAEI A, GÓEZ M J I, SALARI D, PANAHI P N, ABALADEJO-FUENTES V. Characterization and activity of alkaline earthmetals loaded CeO2-MOx, (M=Mn, Fe) mixed oxides in catalytic reduction of NO[J]. Mater Chem Phys, 2014, 143(3):921-928. doi: 10.1016/j.matchemphys.2013.09.017
    [15] LIU F, HE H, ZHANG C, SHAN W P, SHI X Y. Mechanism of the selective catalytic reduction of NOx, with NH3 over environmental-friendly iron titanate catalyst[J]. Catal Today, 2011, 175(1):18-25. doi: 10.1016/j.cattod.2011.02.049
    [16] BRANDENBERGER S, KRÖCHER O, CASAPU M, TISSLER A, ALTHOFF R. Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3[J]. Appl Catal B:Environ, 2011, 101(3):649-659. https://www.researchgate.net/publication/251617491_Hydrothermal_deactivation_of_Fe-ZSM-5_catalysts_for_the_selective_catalytic_reduction_of_NO_with_NH_3
    [17] ELLMERS I, VÉEZ R P, BENTRUP U, BRVCKNER A, GRVNERT W. Oxidation and selective reduction of NO over Fe-ZSM-5-How related are these reactions[J]. J Catal, 2014, 311:199-211. doi: 10.1016/j.jcat.2013.11.024
    [18] TANG X L, HAO J M, XU W G, LI J H. Low temperature selective catalytic reduction of NOx, with NH3 over amorphous MnOx, catalysts prepared by three methods[J]. Catal Commun, 2007, 8(3):329-3341. doi: 10.1016/j.catcom.2006.06.025
    [19] JIANG B Q, LIU Y, WU Z B. Low-temperature selective catalytic reduction of NO on MnOx, /TiO2 prepared by different methods[J]. J Hazard Mater, 2009, 162(2/3):1249-12541.
    [20] KIM M S, CHUNG S H, YOO C J, LEE M S, CHO I H, LEE D W, LEE K Y. Catalytic reduction of nitrate in water over Pd-Cu/TiO2 catalyst:Effect of the strong metal-support interaction (SMSI) on the catalytic activity[J]. Appl Catal B:Environ, 2013, 142-143(5):354-361. https://koreauniv.pure.elsevier.com/en/publications/catalytic-reduction-of-nitrate-in-water-over-pd-cutiosub2sub-cata
    [21] ZHANG G Q, LI Z, ZHENG H Y, FU T J, JU Y B, WANG Y C. Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol[J]. Appl Catal B:Environ, 2015, 179:95-105. doi: 10.1016/j.apcatb.2015.05.001
    [22] CHARY K V R, SAGAR G V, NARESH D, SEELA K K, SRIDHAR B. Characterization and reactivity of copper oxide catalysts supported on TiO2-ZrO2[J]. J Phys Chem B, 2005, 109(19):9437-9444. doi: 10.1021/jp0500135
    [23] ZOU H B, CHEN S Z, LIN W M. Effect of pretreatment methods on the performance of Cu-Zr-Ce-O catalyst for CO selective oxidation[J]. J Nat Gas Chem, 2008, 17(2):208-211. doi: 10.1016/S1003-9953(08)60053-5
    [24] LALITHA K, SADANANDAM G, KUMARI V D, SUBRAHMANYAM M, SREEDHAR B, HEBALKAR N Y. Highly stabilized and finely dispersed Cu2O/TiO2:Apromising visible sensitive photocatalyst for continuous production of hydrogen from glycerol:Water mixtures[J]. J Phys Chem C, 2010, 114(50):22181-22189. doi: 10.1021/jp107405u
    [25] XIN B F, WANG P, DING D D, LIU J, REN Z Y, FU H G. Effect of surface species on Cu-TiO2 photocatalytic activity[J]. Appl Surf Sci, 2008, 254(9):2569-2574. doi: 10.1016/j.apsusc.2007.09.002
    [26] BAGHRICHE O, RTIMI S, PULGARIN C, SANJINES R, KIWI J. Innovative TiO2/Cu nanosurfaces inactivating bacteria in the minute range under low-intensity actinic light[J]. ACS Appl Mater Inter, 2012, 4(10):5234-5240. doi: 10.1021/am301153j
    [27] YAOX J, ZHANG L, LI L, LIU L C, CAOY, DONG X, GAO F, DENG Y, TANG J, CHEN Z, DONG L, CHEN Y. Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature[J]. Appl Catal B:Environ, 2014, 150-151(11):315-329.
    [28] SIZ C, WENG D, WUX D, JIANG Y, WANG B. Synergistic effects between copper and tungsten on the structural and acidic properties of CuOx, /WOx, -ZrO2 catalyst[J]. Catal Sci Technol, 2011, 1(3):453-461. doi: 10.1039/c0cy00086h
    [29] ČAPEK L, DĚDEČEK J, WICHTERLOVÁ B, CIDER L, JOBSON E, TOKAROVÁ V. Cu-ZSM-5 zeolite highly active in reduction of NO with decane:Effect of zeolite structural parameters on the catalyst performance[J]. Appl Catal B:Environ, 2005, 60(3/4):147-153.
    [30] NDONGL B B, IBONDOU M P, GU X G, LU S G, QIU Z F, SUI Q, MBADINGA S M. Enhanced photocatalytic activity of TiO2nanosheetsby doping with Cu for chlorinated solvent pollutants degradation[J]. Ind Eng Chem Res, 2014, 53(4):1368-1376. doi: 10.1021/ie403405z
    [31] LANDI G, LISI L, PIRONE R, TORTORELLI M, RUSSO G. NO decomposition over La-doped Cu-ZSM5 monolith under adsorption-reaction conditions[J]. Appl Catal A:Gen, 2013, 464-465(16):61-67. https://www.researchgate.net/publication/257374248_NO_decomposition_over_La-doped_Cu-ZSM5_monolith_under_adsorption-reaction_conditions
    [32] MA L, CHENG Y S, CAVATAIO G, MCCABE R W, FU L X, LI J H. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx, in diesel exhaust[J]. Chem Eng J, 2013, 225(3):323-330.
    [33] OCHONSKA J, MCCLYMONT D, JODŁOWSKI P J, KNAPIK A, GIL B, MAKOWSKI W, ŁASOCHA W, KOŁODZIEJ A, KOLACZKOWSKI S T, ŁOJEWSKA J. Copper exchanged ultrastable zeolite Y-A catalyst for NH3-SCR of NOx, from stationary biogas engines[J]. Catal Today, 2012, 191(1):6-11. doi: 10.1016/j.cattod.2012.06.010
    [34] NEYLON M K, MARSHALL C L, KROPF A J. In situ EXAFS analysis of the temperature-programmed reduction of Cu-ZSM-5[J]. J Am Chem Soc, 2002, 124(19):5457-5465. doi: 10.1021/ja0176696
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  60
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-24
  • 修回日期:  2016-11-22
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-02-10

目录

    /

    返回文章
    返回