留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱金属碱土金属对神府煤焦气化活性的影响

樊文克 崔童敏 李宏俊 常清华 郭庆华 于广锁 王辅臣

樊文克, 崔童敏, 李宏俊, 常清华, 郭庆华, 于广锁, 王辅臣. 碱金属碱土金属对神府煤焦气化活性的影响[J]. 燃料化学学报(中英文), 2016, 44(8): 897-903.
引用本文: 樊文克, 崔童敏, 李宏俊, 常清华, 郭庆华, 于广锁, 王辅臣. 碱金属碱土金属对神府煤焦气化活性的影响[J]. 燃料化学学报(中英文), 2016, 44(8): 897-903.
FAN Wen-ke, CUI Tong-min, LI Hong-jun, CHANG Qing-hua, GUO Qing-hua, YU Guang-suo, WANG Fu-chen. Effect of AAEM on gasification reactivity of Shenfu char[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 897-903.
Citation: FAN Wen-ke, CUI Tong-min, LI Hong-jun, CHANG Qing-hua, GUO Qing-hua, YU Guang-suo, WANG Fu-chen. Effect of AAEM on gasification reactivity of Shenfu char[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 897-903.

碱金属碱土金属对神府煤焦气化活性的影响

基金项目: 

国家自然科学基金资助 21376079,21376081

详细信息
  • 中图分类号: TQ541

Effect of AAEM on gasification reactivity of Shenfu char

More Information
  • 摘要: 利用热重法和X射线衍射法,研究了神府煤热解焦CO2气化过程中,碱金属碱土金属(AAEM)催化剂对气化活性和微晶结构的影响。比较了负载方式(先热解后负载和先负载后热解)、催化剂种类(Na、K、Ca)以及催化剂添加量(金属原子质量分数1%、3%、5%)的影响。结果表明,对碱金属催化剂,先热解后负载焦样的反应活性比先负载后热解的更好,而碱土金属负载方式对活性的影响则相反;Na和K的催化能力相接近,且两者都比Ca强;煤焦气化活性随AAEM负载量的增加而增强。负载AAEM催化剂均能抑制煤焦石墨化进程,其中,K的抑制作用最强,Ca的抑制作用最弱;抑制作用随添加量增加而增强。
  • 图  1  焦样制备过程示意图

    Figure  1  Schematic of sample preparation

    (x presents loading amount, M presents different catalyst)

    图  2  两种负载方式下煤焦气化反应活性

    Figure  2  Gasification reactivity of chars prepared by two loading methods

    (a): chars loading Na; (b): chars loading K; (c): chars loading Ca

    图  3  催化剂种类对气化反应活性的影响

    Figure  3  Impact of catalyst species on char gasification reactivity

    (a): chars pyrolyzed before loading catalyst; (b): chars pyrolyzed after loading catalyst

    图  4  催化剂添加量对焦气化反应活性的影响

    Figure  4  Impact of catalyst content on char gasification reactivity

    图  5  酸洗煤焦样负载Na后的XRD谱图

    Figure  5  XRD analysis of AC char after loading Na

    图  6  不同种类催化剂焦样的XRD谱图

    Figure  6  XRD analysis of chars of different catalyst species

    图  7  不同K添加量焦样的XRD谱图

    Figure  7  XRD analysis of chars of different K content

    图  8  002峰和γ峰分峰拟合示意图

    Figure  8  Curve-fitting of 002 peak and γ peak

    表  1  实验煤样的工业分析和元素分析

    Table  1  Proximate and ultimate analysis of coal samples

    CoalProximate analysis wd/%Ultimate analysis wd/%
    VFCACHSNO*
    SF34.5057.767.7472.363.870.560.9914.48
    SF AC34.2161.813.9871.173.600.340.9619.95
    *:by difference
    下载: 导出CSV

    表  2  煤中矿物质的元素分析

    Table  2  Mineral element content of coal

    CoalASH
    w/%
    Element content w/%
    SiAlFeCaMgTiNaKS
    SF7.741.690.570.490.880.0690.0310.120.0580.26
    SF AC3.981.250.330.180.0900.0230.0180.0160.0410.056
    下载: 导出CSV

    表  3  干燥无灰基失重率L0

    Table  3  Mass loss L0 on dry-ash-free base

    SampleAC0.01Na0.03Na0.05Na0.01K0.03K0.05K0.01Ca0.03Ca0.05Ca
    L0 w/%35.9634.8935.6938.1136.3035.1536.2040.1740.0646.51
    下载: 导出CSV

    表  4  900 ℃下煤焦气化反应性指数R0.5

    Table  4  Gasification reactivity index R0.5 of chars at 900 ℃

    SampleR0.5/min-1
    Rchar0.046 4
    AC char0.011 8
    Pyrolysis before
    loading catalyst
    R0.5
    /min-1
    pyrolysis after
    loading catalyst
    R0.5
    /min-1
    AC char 0.01Na0.055 8AC 0.01Na char0.045 6
    AC char 0.03Na0.145 7AC 0.03Na char0.134 8
    AC char 0.05Na0.207 1AC 0.05Na char0.151 8
    AC char 0.01K0.035 3AC 0.01K char0.033 4
    AC char 0.03K0.115 4AC 0.03K char0.086 5
    AC char 0.05K0.187 9AC 0.05K char0.177 8
    AC char 0.01Ca0.025 5AC 0.01Ca char0.019 7
    AC char 0.03Ca0.030 9AC 0.03Ca char0.092 0
    AC char 0.05Ca0.034 1AC 0.05Ca char0.147 8
    下载: 导出CSV

    表  5  焦样的XRD微晶参数

    Table  5  XRD parameters of chars

    Sample2θ002/(°)2θ100/(°)d002/nmLc/nmLa/nm
    AC char24.1543.550.3680.9463.646
    AC 0.01Na char23.7943.450.3740.9163.573
    AC 0.03Na char23.7043.400.3750.9443.248
    AC 0.05Na char23.1043.350.3851.0183.108
    AC 0.01K char24.0043.710.3700.8813.753
    AC 0.03K char23.6643.200.3760.8593.464
    AC 0.05K char22.5043.060.3950.8163.073
    AC 0.01Ca char23.2643.710.3820.9134.123
    AC 0.03Ca char25.7043.810.3463.0073.914
    AC 0.05Ca char25.6443.990.3472.9333.518
    下载: 导出CSV
  • [1] 于遵宏, 王辅臣.煤炭气化技术[M].北京:化学工业出版社, 2010.

    YU Zun-hong, WANG Fu-chen.Coal Gasification Technology[M].Beijing:Chemical Industry Press, 2010.
    [2] 王辅臣, 于广锁, 龚欣, 刘海峰, 王亦飞, 周志杰, 陈雪莉.大型煤气化技术的研究与发展[J].化工进展, 2009, 28(2):173-180. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200902002.htm

    WANG Fu-chen, YU Guang-suo, GONG Xin, LIU Hai-feng, WANG Yi-fei, ZHOU Zhi-jie, CHEN Xue-li.Research and development of large-scale coal gasification technology[J].Chem Ind Eng Prog, 2009, 28(2):173-180. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200902002.htm
    [3] LU L, KONG C, SAHAJWALLA V, HARRIS D.Char structural ordering during pyrolysis and combustion and its influence on char reactivity[J].Fuel, 2002, 81(9):1215-1225. doi: 10.1016/S0016-2361(02)00035-2
    [4] 熊杰, 周志杰, 许慎启, 于广锁.碱金属对煤热解和气化反应速率的影响[J].化工学报, 2011, 62(1):192-198. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201101031.htm

    XIONG Jie, ZHOU Zhi-jie, XU Shen-qi, YU Guang-suo.Effect of alkali metal on rate of coal pyrolysis and gasification[J].CIESC J, 2011, 62(1):192-198. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201101031.htm
    [5] 李阳, 刘洋, 冯伟, 赵斌, 智科瑞, 滕英跃, 宋银敏, 何润霞, 周晨亮, 刘全生.氧化钙对胜利褐煤焦水蒸气气化反应性能及微结构的影响[J].燃料化学学报, 2015, 43(9):1038-1043. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18687.shtml

    LI Yang, LIU Yang, FENG Wei, ZHAO Bin, ZHI Ke-duan, TENG Ying-yue, SONG Yin-min, HE Run-xia, ZHOU Chen-liang, LIU Quan-sheng.Influence of calcium oxide on Shengli lignite char microstructure and steam gasification performance[J].J Fuel Chem Technol, 2015, 43(9):1038-1043. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18687.shtml
    [6] WANG Y, WANG Z, HUANG J, FANG Y.Catalytic gasification activity of Na2CO3 and comparison with K2CO3 for a high-aluminum coal char[J].Energy Fuels, 2015, 29(11):6988-6998. doi: 10.1021/acs.energyfuels.5b01537
    [7] WANG J, SAKANISHI K, SAITO I, TAKARADA T, MORISHITA K.High-yield hydrogen production by steam gasification of Hypercoal (ash-free coal extract) with potassium carbonate:Comparison with raw coal[J].Energy Fuels, 2005, 19(5):2114-2120. doi: 10.1021/ef040089k
    [8] KOPYSCINSKI J, HABIBI R, MIMS C A, HILL J M.K2CO3 catalyzed CO2 gasification of ash-free coal:Kinetic study[J].Energy Fuels, 2013, 27(8):4875-4883. doi: 10.1021/ef400552q
    [9] 卫小芳, 黄戒介, 房倚天, 王洋.碱金属对褐煤气化反应性的影响[J].煤炭转化, 2007, 30(4):38-42. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH200704013.htm

    WEI Xiao-fang, HUANG Jie-jie, FANG Yi-tian, WANG Yang.Effect of alkali metal on the lignite gasification reactivity[J].Coal Convers, 2007, 30(4):38-42. http://www.cnki.com.cn/Article/CJFDTOTAL-MTZH200704013.htm
    [10] 姜明泉.煤焦碱金属催化水蒸气气化-产氢行为和催化剂性能的研究[D].上海:华东理工大学, 2013.

    JIANG Ming-quan.The study on alkali-catalyzed gasification of coal char:Behaviors of hydrogen production and performance of the catalysts[D].Shanghai:East China University of Science and Technology, 2013.
    [11] KWON T W, KIM J R, KIM S D, PARK W H.Catalytic steam gasification of lignite char[J].Fuel, 1989, 68(4):416-421. doi: 10.1016/0016-2361(89)90261-5
    [12] YEBOAH Y D, XU Y, SHETH A, GODAVARTY A, AGRAWAL P K.Catalytic gasification of coal using eutectic salts:Identification of eutectics[J].Carbon, 2003, 41(2):203-214. doi: 10.1016/S0008-6223(02)00310-X
    [13] 王晓磊.典型碱金属碱土金属对焦炭-CO2反应性影响的研究[D].北京:煤炭科学研究总院, 2008.

    WANG Xiao-lei.Study on influence of typical alkali and alkaline metal to coke reactivity with CO2[D].Beijing:China Coal Research Institute, 2008.
    [14] DING L, ZHOU Z, GUO Q, HUO W, YU G.Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J].Fuel, 2015, 142:134-144. doi: 10.1016/j.fuel.2014.11.010
    [15] MANI T, MAHINPEY N, MURUGAN P.Reaction kinetics and mass transfer studies of biomass char gasification with CO2[J].Chem Eng Sci, 2011, 66(1):36-41. doi: 10.1016/j.ces.2010.09.033
    [16] LANG R J, NEAVEL R C.Behavior of calcium as a steam gasification catalyst[J].Fuel, 1982, 61(7):620-626. doi: 10.1016/0016-2361(82)90006-0
    [17] 吴磊, 周志杰, 王兴军, 于广锁, 王辅臣.神府烟煤水煤浆快速热解焦结构演化及其反应性的研究[J].燃料化学学报, 2013, 41(4):422-429. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18161.shtml

    WU Lei, ZHOU Zhi-jie, WANG Xin-jun, YU Guang-suo, WANG Fu-chen.Structure changes and gasification reactivity of CWS char from Shenfu coal rapid pyrolysis[J].J Fuel Chem Technol, 2013, 41(4):422-429. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18161.shtml
    [18] YE D P, AGNEW J B, ZHANG D.Gasification of a South Australian low-rank coal with carbon dioxide and steam:Kinetics and reactivity studies[J].Fuel, 1998, 77(11):1209-1219. doi: 10.1016/S0016-2361(98)00014-3
    [19] DING L, ZHOU Z, HUO W, WANG Y, YU G.In situ heating stage analysis of fusion and catalytic effects of a Na2CO3 additive on coal char particle gasification[J].Ind Eng Chem Res, 2014, 53(49):19159-19167. doi: 10.1021/ie503518q
    [20] SONIBARE O O, HAEGER T, FOLEY S F.Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J].Energy, 2010, 35(12):5347-5353. doi: 10.1016/j.energy.2010.07.025
    [21] YEN T H, ERDMAN J G, POLLACK S S.Investigation of the structure of petroleum asphaltenes by X-ray diffraction[J].Anal Chem, 1961, 33(11):1587-1594. doi: 10.1021/ac60179a039
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  48
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-31
  • 修回日期:  2016-05-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-08-10

目录

    /

    返回文章
    返回