留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

棕榈壳酶解-温和酸解木质素的结构及热解特性研究

常国璋 谢建军 杨会凯 黄艳琴 阴秀丽 吴创之

常国璋, 谢建军, 杨会凯, 黄艳琴, 阴秀丽, 吴创之. 棕榈壳酶解-温和酸解木质素的结构及热解特性研究[J]. 燃料化学学报(中英文), 2016, 44(10): 1185-1194.
引用本文: 常国璋, 谢建军, 杨会凯, 黄艳琴, 阴秀丽, 吴创之. 棕榈壳酶解-温和酸解木质素的结构及热解特性研究[J]. 燃料化学学报(中英文), 2016, 44(10): 1185-1194.
CHANG Guo-zhang, XIE Jian-jun, YANG Hui-kai, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Structure and pyrolysis characteristics of enzymatic/mild acidolysis lignin isolated from palm kernel shell[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1185-1194.
Citation: CHANG Guo-zhang, XIE Jian-jun, YANG Hui-kai, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Structure and pyrolysis characteristics of enzymatic/mild acidolysis lignin isolated from palm kernel shell[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1185-1194.

棕榈壳酶解-温和酸解木质素的结构及热解特性研究

基金项目: 

国家自然科学基金 51176194

详细信息
  • 中图分类号: TK6

Structure and pyrolysis characteristics of enzymatic/mild acidolysis lignin isolated from palm kernel shell

More Information
  • 摘要: 采用酶解/温和酸解法提取了棕榈壳和麦秆的木质素(EMALs),利用傅里叶红外光谱(FT-IR)、裂解器-气相色谱质谱联用(Py-GC/MS)和热重-红外联用(TG-FTIR)技术,对两种EMALs的化学结构和热解特性进行了对比研究,并采用Ozawa-Flynn-Wall方法计算了其热解反应的活化能。结果表明,棕榈壳EMAL和麦秆EMAL均为HGS型木质素。500℃下,两种EMALs的热解产物主要包括酚类、酸类和少量的醇类、醛酮类等化合物;棕榈壳EMAL热解酚类产物中H、G、S型单体酚类的比例分别为47.61%、25.64%和17.18%,而麦秆EMAL分别为23.66%、51.90%和15.50%。在热解反应主失重区(200-380℃),棕榈壳EMAL的主失重速率(50.80%/min)低于麦秆EMAL(78.63%/min);但棕榈壳EMAL热解同时存在肩状失重峰(265℃,27.40%/min),这与其较多H结构产物的释放相关。H型结构产物释放的放热效应降低了棕榈壳EMAL热解初期的活化能(20%,127.92 kJ/mol),同时使其热解过程(20%-80%)的平均活化能(152.32 kJ/mol)低于麦秆EMAL(161.75 kJ/mol)。
  • 图  1  PKS-EMAL、WS-EMAL的FT-IR谱图

    Figure  1  FT-IR spectra of EMALs isolated from PKS and WS

    图  2  PKS-EMAL FT-IR谱图中1 595、1 271、1 115 cm-1峰形的拟合结果

    Figure  2  Fitting results of 1 595, 1 271, 1 115 cm-1 peaks obtained from FT-IR of PKS-EMAL

    a: fit peak 1; b: fit peak 2; c: fit peak 3; d: cumulative fit peak; e: subtracted raw data

    图  3  PKS-EMAL、WS-EMAL中G型、S型基本结构的FT-IR信息

    Figure  3  Information of G-type and S-type structure in the EMALs of PKS and WS

    图  4  PKS-EMAL、WS-EMAL 500 ℃快速热解的GC/MS总离子流图

    Figure  4  Total ion chromatogram obtained by Py-GC/MS of EMALs isolated from PKS and WS

    图  5  PKS-EMAL和WS-EMAL 500 ℃热解酚类生物油的种类分布

    Figure  5  Distribution of main types of bio-oils from pyrolysis of PKS-EMAL and WS-EMAL at 500 ℃

    图  6  PKS-EMAL、WS-EMAL热解过程的TG和DTG曲线

    Figure  6  TG and DTG curves of pyrolysis of EMALs isolated from PKS and WS

    图  7  PKS-EMAL、 WS-EMAL热解不同时期挥发产物的FT-IR谱图

    Figure  7  FT-IR spectra for the volatile components from pyrolysis of EMALs isolated from PKS and WS

    图  8  采用Ozawa-Flynn-Wall 计算两种EMALs热解活化能的拟合线

    Figure  8  Regression lines to conversion of 20%-80% based on the Ozawa-Flynn-Wall method for two EMALs at 5, 10, 20, 30 K/min

    表  1  PKS-EMAL、WS-EMAL FT-IR谱图的解析[3, 10]

    Table  1  FT-IR spectra analysis of EMALs isolated from PKS and WS

    Num. in Figure 1Wavenumber σ/cm-1Band assignment
    PKS-EMALWS-EMAL
    13 4033 403O-H stretching
    22 9342 923, 2 855C-H stretching
    3-1 652C=O stretching in conjugated aryl ketones
    41 5971 601aromatic skeleton vibrations
    51 4651 462C-H deformations
    61 4271 427aromatic skeleton vibrations & C-H in plane deformations
    71 3671 367aliphatic C-H stretching in-CH3 and phen.OH
    81 2711 269C-O stretching in-OCH3 and phen.OH of G type
    91 2291 229C-C+C-O+C=O stretching
    101 1601 160C=O in ester groups, typical for HGS lignins
    111 1151 116C-H stretching of typical S unit
    121 0361 036aromatic C-H in plane deformation & C-O stretching
    13700-900700-900Aromatic hydrogen
    下载: 导出CSV

    表  2  PKS-EMAL、WS-EMAL 500 ℃热解生物油的主要组分及相对含量

    Table  2  Main chemical constituents of bio-oils from pyrolysis of PKS-EMAL and WS-EMAL at 500 ℃

    Retention time t/minComponents of bio-oilStructuralformulaMolecular formulaRelative content w/%
    PKS-EMALWS-EMAL
    Acids & alcohols
    2.06acetic acidC2H4O21.54-
    14.221, 6-anhydro-β-glucopyranoseC6H10O5-2.17
    16.61tetradecanoic acidC14H28O21.231.62
    18.36cis-9-hexadecenoic acidC16H30O20.860.56
    18.62n-hexadecanoic acidC16H32O24.695.54
    20.176-octadecenoic acidC18H34O21.282.88
    20.42octadecanoic acidC18H36O24.465.00
    22.04eicosanoic acidC20H40O20.340.56
    22.73dehydroabietic acidC20H28O2-2.13
    23.45phthalicacid, 2-ethylhexylesterC16H22O43.253.99
    total17.6524.45
    Aldehydes & ketones
    3.38furfuralC5H4O22.23-
    11.08(Z)-pent-2-en-1-yl acetateC7H12O21.35-
    22.29diisooctyladipateC22H42O40.100.57
    others0.780.41
    total4.460.98
    Phenols
    6.54PhenolC6H6O6.490.26
    7.942-methoxy-phenolC7H8O21.422.39
    7.99phenol, 4-methyl-C7H8O0.64-
    9.284-methyl-2-methoxyphenolC8H10O22.882.64
    10.211, 2-benzenediolC6H6O21.862.34
    10.541, 2-benzenediol, 3-methoxy-C7H8O31.070.51
    10.72phenol, 4-ethyl-2-methoxy-C9H12O20.630.46
    10.971, 2-benzenediol, 3-methyl-C7H8O20.481.35
    11.001, 2-benzenediol, 4-methyl-C7H8O21.52-
    11.212-methoxy-4-vinylphenolC9H10O22.954.06
    11.362, 6-dimethoxyphenolC8H10O31.922.17
    11.77phenol, 2-methoxy-3-(2-propenyl)-C10H12O20.300.89
    11.902-methoxy-4-(1-propenyl)phenolC10H12O20.194.18
    11.91phenol, 2-methoxy-4-propyl-C10H14O2-0.18
    12.34vanillinC8H8O30.541.70
    12.422-methoxy-4-(1-propenyl)-phenolC10H12O20.24-
    12.584-ethylcatecholC8H10O2-0.90
    12.933-methoxy-4-hydroxybenzoicacidC8H8O43.06-
    13.424-acetyl-2-methoxyphenolC9H10O30.360.92
    13.95homovanillic acidC9H10O40.654.53
    14.35benzoicacid, 4-hydroxy-C7H6O316.110.3
    14.794-allyl-2, 6-dimetoxyphenolC11H14O35.414.03
    15.44siringic aldehydeC9H10O40.51-
    15.61coniferylic alcoholC10H12O3-1.54
    16.24acetosyringoneC10H12O40.57-
    16.29p-coniferaldehydeC10H10O3-2.65
    others5.852.55
    total55.6450.55
    Others
    21.891-phenanthrenecarboxylicacC21H30O2-0.63
    24.43(-)-pterocarpinC17H14O5-0.35
    25.47squaleneC30H50-2.99
    loss of column & unknowns20.3117.25
    total20.3121.22
    下载: 导出CSV

    表  3  Ozawa-Flynn-Wall 计算拟合线的相关系数与活化能

    Table  3  Correlation coefficient (R2) and activation energy (Ea) calculated from the Ozawa-Flynn-Wall method

    Conversion x/%PKS-EMALWS-EMAL
    Ea/(kJ·mol-1)R2Ea/(kJ·mol-1)R2
    20127.920.980 1244.340.959 9
    30135.760.969 3139.750.993 9
    40139.710.949 5134.280.997 9
    50140.390.956 7130.980.998 9
    60139.880.961 8128.800.998 9
    70153.430.974 9129.680.998 7
    80229.160.985 5224.440.979 1
    Average152.320.968 2161.750.989 6
    下载: 导出CSV
  • [1] LUPOI J S, SINGH S, PARTHASARATHI R, SIMMONS B A, HENRY R J.Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin[J].Renew Sust Energy Rev, 2015, 49:871-906. doi: 10.1016/j.rser.2015.04.091
    [2] 陈磊, 陈汉平, 陆强, 宋扬, 丁学杰, 王贤华, 杨海平.木质素结构及热解特性[J].化工学报, 2014, 65(9):3626-3633. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201409043.htm

    CHEN Lei, CHEN Han-ping, LU Qiang, SONG Yang, DING Xue-jie, WANG Xian-hua, YANG Hai-ping.Characterization of structure and pyrolysis behavior of lignin[J].J Chem Ind Eng, 2014, 65(9):3626-3633. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201409043.htm
    [3] CHEN L, WANG X H, YANG H P, LU Q, LI D, YANG Q, CHEN H P.Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS[J].J Anal Appl Pyrolysis, 2015, 113:499-507. doi: 10.1016/j.jaap.2015.03.018
    [4] SHEN D K, GU S, LUO K H, WANG S R, FANG M X.The pyrolytic degradation of wood-derived lignin from pulping process[J].Bioresour Technol, 2010, 101:6136-6146. doi: 10.1016/j.biortech.2010.02.078
    [5] WANG S R, RU B, LIN H Z, SUN W X, LUO Z Y.Pyrolysis behaviors of four lignin polymers isolated from the same pine wood[J].Bioresour Technol, 2015, 182:120-127. doi: 10.1016/j.biortech.2015.01.127
    [6] 武书彬, 李梦实.麦草酶解-温和酸解木质素的化学结构特性研究[J].林产化学与工业, 2006, 26(1):104-108. http://www.cnki.com.cn/Article/CJFDTOTAL-LCHX200601024.htm

    WU Shu-bin, LI Meng-shi.Study on chemical structure characteristics of wheat straw lignin from enzymatic hydrolysis-mild acidolysis[J].Chem Ind Forest Prod, 2006, 26(1):104-108. http://www.cnki.com.cn/Article/CJFDTOTAL-LCHX200601024.htm
    [7] 娄瑞.非木材纤维木素在不同热化学条件下的产物形成规律与调控途径[D].广州:华南理工大学, 2011.

    LOU Rui.Formation rules and pathway adjustments of pyrolysates derived from non-wood lignin under different thermochemical conditions[D].Guangzhou:South China University of Technology, 2011.
    [8] WEN J L, SUN S L, XUE B L, SUN R C.Structual elucidation of inhomogeneous lignins from bamboo[J].Int J Biol Macromol, 2015, 77:250-259. doi: 10.1016/j.ijbiomac.2015.03.044
    [9] 娄瑞, 武书彬, 董浩亮, 吕高金.毛竹酶解/温和酸解木质素的快速热解研究[J].燃料化学学报, 2015, 43(1):42-47. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18553.shtml

    LOU Rui, WU Shu-bin, DONG Hao-liang, LV Gao-jin.Fast pyrolysis of enzymatic/mild acidolysis lignin from moso bamboo[J].J Fuel Chem Technol, 2015, 43(1):42-47. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18553.shtml
    [10] YANG H P, YAN R, CHEN H P, LEE D H, ZHENG C G.Characteristics of hemicellulose, cellulose and lignin pyrolysis[J].Fuel, 2007, 86:1781-1788. doi: 10.1016/j.fuel.2006.12.013
    [11] LOU R, WU S B.Products properties from fast pyrolysis of enzymatic/mild acidolysis lignin[J].Appl Energy, 2011, 88:316-322. doi: 10.1016/j.apenergy.2010.06.028
    [12] 程辉, 余剑, 姚海琴, 许光文.木质素慢速热解机理[J].化工学报, 2013, 64(5):1757-1765.

    CHENG Hui, YU Jian, YAO Hai-qin, XU Guang-wen.Mechanism analysis of lignin slow pyrolysis[J].J Chem Ind Eng, 2013, 64(5):1757-1765.
    [13] 武宏香, 李海滨, 冯宜鹏, 王小波, 赵增立, 何方.钾元素对生物质主要组分热解特性的影响[J].燃料化学学报, 2013, 41(8):950-957. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18235.shtml

    WU Hong-xiang, LI Hai-bin, FENG Yi-peng, WANG Xiao-bo, ZHAO Zeng-li, HE Fang.Effects of potassium on the pyrolysis of biomass components by TG-FTIR analysis[J].J Fuel Chem Technol, 2013, 41(8):950-957. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18235.shtml
    [14] MOHAMMED M A A, SALMIATON A, WAN AZLINA W A K G, AMRAN M S M, FAKHRUL-RAZI A, TAUFIQ-YAP Y H.Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia[J].Renew Sust Energ Rev, 2011, 15(2):1258-1270. doi: 10.1016/j.rser.2010.10.003
    [15] 常国璋, 黄艳琴, 赖喜锐, 阴秀丽, 吴创之.棕榈壳焦CO2气化过程中反应性及结构特性研究[J].燃料化学学报, 2015, 43(8):1-8. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18675.shtml

    CHANG Guo-zhang, HUANG Yan-qin, LAI Xi-rui, YIN Xiu-li, WU Chuang-zhi.Experimental study on the structure and reactivity of palm kernel shell chars during CO2 gasification[J].J Fuel Chem Technol, 2015, 43(8):1-8. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18675.shtml
    [16] ABNISA F, ARAMI-NIYA A, WAN DAUD W M A, SAHU J N.Characterization of bio-oil and bio-char from pyrolysis of palm oil wastes[J].Bioenergy Res, 2013, 6(2):830-840. doi: 10.1007/s12155-013-9313-8
    [17] 张斌, 武书彬, 阴秀丽, 吴创之, 邱泽晶, 马隆龙.酸水解木质素的结构及热解产物分析[J].太阳能学报, 2011, 32(1):19-24. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201101006.htm

    ZHANG Bin, WU Shu-bin, YIN Xiu-li, WU Chuang-zhi, QIU Ze-jing, MA Long-long.Structure and pyrolysis products analysis of acid hydrolysis lignin[J].Acta Energy Sin, 2011, 32(1):19-24. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201101006.htm
    [18] 何川.稀酸预处理中奇岗木质素局部化学和结构表征[D].北京:北京林业大学, 2015.

    HE Chuan.Topochemistry and characterization of lignin during diluted acid pretreatment of Miscanthus×giganteus[D].Beijing:Beijing Forest University, 2015.
    [19] SHARMA R K, WOOTEN J B, BAKIGA V L, LIN X, CHAN W G, HAJALIGOL M R.Characterization of chars from pyrolysis of lignin[J].Fuel, 2004, 83(11/12):1469-1482.
    [20] 路瑶, 魏贤勇, 宗志敏, 陆永超, 赵炜, 曹景沛.木质素的结构研究与应用[J].化学进展, 2013, 25(5):838-858. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201305021.htm

    LU Yao, WEI Xian-yong, ZONG Zhi-min, LU Yong-chao, ZHAO Wei, CAO Jing-pei.Structural investigationand application of lignins[J].Prog Chem, 2013, 25(5):838-858. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201305021.htm
    [21] JIANG G, NOWAKOWSKI D J, BRIDGWATER A V.Effect of the temperatureon the composition of lignin pyrolysis products[J].Energy Fuels, 2010, 24(8):4470-4475. doi: 10.1021/ef100363c
    [22] PENG C, ZHANG G, YUE J, XU G.Pyrolysis of lignin for phenols with alkaline additive[J].Fuel Process Technol, 2014, 124:212-221. doi: 10.1016/j.fuproc.2014.02.025
    [23] 常国璋, 黄艳琴, 谢建军, 阴秀丽, 吴创之.棕榈壳热解失重特性及动力学研究[J].林产化学与工业, 2016, 36(4):31-40.

    CHANG Guo-zhang, HUANG Yan-qin, XIE Jian-jun, YIN Xiu-li, WU Chuang-zhi.Products characteristics and kinetic analysis of palm kernel shell pyrolysis[J].Chem Ind Forest Prod, 2016, 36(4):31-40.
    [24] 杨海平, 陈汉平, 晏蓉, 张世红, 郑楚光.油棕废弃物热解的TG-FTIR分析[J].燃料化学学报, 2006, 34(3):309-314. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17001.shtml

    YANG Hai-ping, CHEN Han-ping, YAN Rong, ZHANG Shi-guang, ZHENG Chu-guang.TG-FTIR analysis of palm oil wastes pyrolysis[J].J Fuel Chem Technol, 2006, 34(3):309-314. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17001.shtml
    [25] DEL RIO J C, GUTIÉRREZ A, RODRÍGUEZ I M, IBARRA D, MARTINEZ A T.Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR[J].J Anal Appl Pyrolysis, 2007, 79(1):39-46.
    [26] SAMMONS R J, HARPER D P, LABBE N, BOZELL J J, ELDER T, RIALS T G.Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis[J].BioResources, 2013, 8(2):2751-2767.
    [27] NIU S L, HAN K H, LU C M.Kinetic calculations for the thermal decomposition of calcium propionate under non-isothermal conditions[J].Chin Sci Bull, 2011, 56(12):1278-1284. doi: 10.1007/s11434-010-4065-8
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  33
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-11
  • 修回日期:  2016-07-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-10-10

目录

    /

    返回文章
    返回