留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

β-Mo2C和Ni3Mo3N/β-Mo2C的制备及其甲烷化反应性能研究

霍晓东 王志青 张戎 宋双双 黄戒介 房倚天

霍晓东, 王志青, 张戎, 宋双双, 黄戒介, 房倚天. β-Mo2C和Ni3Mo3N/β-Mo2C的制备及其甲烷化反应性能研究[J]. 燃料化学学报(中英文), 2016, 44(4): 457-462.
引用本文: 霍晓东, 王志青, 张戎, 宋双双, 黄戒介, 房倚天. β-Mo2C和Ni3Mo3N/β-Mo2C的制备及其甲烷化反应性能研究[J]. 燃料化学学报(中英文), 2016, 44(4): 457-462.
HUO Xiao-dong, WANG Zhi-qing, ZHANG Rong, SONG Shuang-shuang, HUANG Jie-jie, FANG Yi-tian. Preparation of β-Mo2C, Ni3Mo3N/β-Mo2C and its catalytic performance for methanation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 457-462.
Citation: HUO Xiao-dong, WANG Zhi-qing, ZHANG Rong, SONG Shuang-shuang, HUANG Jie-jie, FANG Yi-tian. Preparation of β-Mo2C, Ni3Mo3N/β-Mo2C and its catalytic performance for methanation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 457-462.

β-Mo2C和Ni3Mo3N/β-Mo2C的制备及其甲烷化反应性能研究

基金项目: 

中国科学院战略性先导科技专项 XDA07050100

山西省青年科技研究基金 2013021007-2

中国科学院青年创新促进会项目 2014156

详细信息
  • 中图分类号: O643

Preparation of β-Mo2C, Ni3Mo3N/β-Mo2C and its catalytic performance for methanation

More Information
  • 摘要: 通过焙烧钼酸铵和六次甲基四胺(HMT)生成的络合物,制备β-Mo2C。在此基础上加入Ni助剂制备了Ni3Mo3N/β-Mo2C双金属碳化物催化剂。采用XRD、SEM、HRTEM、低温氮吸附、元素分析等方法对催化剂进行了表征,考察了其合成气甲烷化反应性能。结果表明,β-Mo2C有较高的CO转化率,但CO转化率和CH4选择性分别从第10 h的75.93%和36.79%降低到了第100 h的67.41%和33.54%。因此,β-Mo2C活性不够稳定且CH4选择性较低。而Ni助剂的加入显著提高了催化剂的甲烷化活性及稳定性,使CO转化率和CH4选择性分别从第10 h的83.15%和46.64%升高到了第100 h的92.51%和57.23%。这是因为Ni助剂的加入有助于生成Ni3Mo3N,新生成的Ni3Mo3N有利于甲烷化反应。
  • 图  1  催化剂的XRD谱图

    Figure  1  XRD patterns of the catalysts

    图  2  催化剂的SEM照片

    Figure  2  SEM images of the catalysts

    (a): β-Mo2C; (b): Ni/β-Mo2C; (c): an enlarged image of β-Mo2C; (d): an enlarged image of Ni/β-Mo2C

    图  3  催化剂的TEM和HRTEM照片

    Figure  3  TEM and HRTEM images of the catalysts

    (a): β-Mo2C; (b): Ni/β-Mo2C; (c): an enlarged image of β-Mo2C; (d): an enlarged image of Ni/β-Mo2C

    图  4  CO转化率和CH4选择性随反应时间的变化

    Figure  4  Change of CO conversion and CH4 selectivity along with the reaction time

    (a): β-Mo2C; (b): Ni/β-Mo2C

    表  1  催化剂的孔径结构和元素分析

    Table  1  Pore structure and elemental analysis of the catalysts

    SampleSpecific surface area A/(m2·g-1)Pore volumev/(cm3·g-1)Average pore diameter d/nmAtom content w/%
    MoaNiaCbNbHbOc
    β-Mo2C10.260.039915.5789.08-7.520.150.073.18
    Ni-Mo2C6.490.044727.5669.3520.962.121.850.075.65
    a: ICP-AES; b: elemental analysis; c: calculated by the subtraction
    下载: 导出CSV

    表  2  催化剂的甲烷化性能a,b

    Table  2  Performance of different catalysts

    CatalystxCO/%Rate c/(mol·hcat-1·g-1)sCO2/%Selectivity of hydrocarbon product s/%sliquid/%
    CH4C2H6C2H4
    β-Mo2C67.411.8538.3433.5416.154.347.63
    Ni/β-Mo2C92.513.0932.7157.231.830.118.12
    a: reaction conditions: H2/CO(mol ratio)=2.0,p=3.0MPa,T=773K,GHSV= 4100h-1
    b: time on stream: 100h
    c: 2mL β-Mo2C 4.64g,2mL Ni/β-Mo2C 3.81g
    下载: 导出CSV
  • [1] 付国忠, 陈超. 我国天然气供需现状及煤制天然气工艺技术和经济性分析[J]. 中外能源, 2010, 15(6): 28-34. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201006010.htm

    FU Guo-zhong, CHEN Chao. NG demand and supply in China and economic and technical analysis of coal gasification technology[J]. Sino-Global Energy, 2010, 15(6): 28-34. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201006010.htm
    [2] 杨春生. 煤制天然气产业发展前景分析[J]. 中外能源, 2010, 15(7): 35-40. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201007009.htm

    YANG Chun-sheng. Prospects for coal gasification in China[J]. Sino-Global Energy, 2010, 15(7): 35-40. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201007009.htm
    [3] 路霞, 陈世恒, 王万丽, 马紫峰. CO甲烷化Ni基催化剂的研究进展[J]. 石油化工, 2010, 39(3): 340-345. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201003065.htm

    LU Xia, CHEN Shi-heng, WANG Wan-li, MA Zi-feng. Progress in Ni-based catalysts for CO methanation[J]. Petrochem Technol, 2010, 39(3): 340-345. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201003065.htm
    [4] 莫欣满, 董新法, 刘其海. 纳米ZrO2负载Ni催化剂催化CO选择性甲烷化[J]. 石油化工, 2008, 37(4): 656-661.

    MO Xin-man, DONG Xin-fa, LIU Qi-hai. Selectivity methanation of CO over Ni-based catalysts supported on nano-Zirconia[J]. Petrochem Technol, 2008, 37(4): 656-661.
    [5] 罗来涛, 李松军, 邓庚凤. Sm2O3对Ni/sepiolite甲烷化催化剂的影响[J]. 燃料化学学报, 2011, 29(4): 302-304. http://www.cnki.com.cn/Article/CJFDTotal-RLHX200104002.htm

    LUO Lai-tao, LI Song-jun, DENG Geng-feng. Effect of samarium on Ni/sepiolite methanation catalyst[J]. J Fuel Chem Technol, 2011, 29(4): 302-304. http://www.cnki.com.cn/Article/CJFDTotal-RLHX200104002.htm
    [6] 田大勇, 杨霞, 秦绍东. 载体及助剂对镍基甲烷化催化剂稳定性的影响[J]. 化工进展, 2012, 31(S1): 229-231. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2012S1051.htm

    TIAN Da-yong, YANG Xia, QIN Shao-dong. Effect of supporter and promoter on stability of Ni-based methanation catalysts[J]. Chem Ind Eng Prog, 2012, 31(S1): 229-231. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2012S1051.htm
    [7] CHEN J G. Carbide and nitride over layers on early transition metal surface: Preparation, characterization and reactivities[J]. Chem Rev, 1996, 96(4): 1477-1498. doi: 10.1021/cr950232u
    [8] RAMANATHAN S, OYAMA S T. New catalysts for hydroprocessing: Transition metal carbides and nitrides[J]. J Phys Chem, 1995, 99(44): 16365-16372. doi: 10.1021/j100044a025
    [9] CHOI J S, MAUGE F, PICHON C. Alumina-supported cobalt-molybdenum sulfide modified by tin via surface organometallic chemistry: Application to the simultaneous hydrodesulfurization of thiophenic compounds and the hydrogenation of olefins[J]. Appl Catal A: Gen, 2004, 267(2): 203-216. https://www.researchgate.net/publication/271041905_Alumina-supported_cobaltmolybdenum_sulfide_modified_by_tin_via_surface_organometallic_chemistry_application_to_the_simultaneous_hydrodesulfurization_of_thiophenic_compounds_and_the_hydrogenation_of_ol
    [10] MASHKINA A V. Thiophene hydrogenation to tetrahydrothiophene over tungsten sulfide catalysts[J]. Kinet Catal, 2003, 44(2): 277-282. doi: 10.1023/A:1023316831685
    [11] ABE H, BELL A T. Catalytic hydrotreating of Indole, Benzothiophene and Benzofuran over molybdenum nitride[J]. Catal Lett, 1993, 18(3): 1-8. https://www.researchgate.net/publication/226691688_Catalytic_hydrotreating_of_indole_benzothiophene_and_benzofuran_over_Mo2N
    [12] SAJKOWSKI D J, OYAMA S T. Catalytic hydrotreating by molybdenum nitrides and molybdenum carbides[J]. Appl Catal A: Gen, 1996, 134(2): 339-349. doi: 10.1016/0926-860X(95)00202-2
    [13] OSHIKAWA K, NAGAI M, OMI S. Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS[J]. J Phys Chem B, 2001, 105(38): 9124-9131. doi: 10.1021/jp0111867
    [14] WANG D, LUNSFORD J H, ROSYNEK M P. Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene[J]. J Catal, 1997, 169(1): 347-358. doi: 10.1006/jcat.1997.1712
    [15] BLEKKAN E, GUONG P H, LEDOUX M J, GUILLE J. Isomerization of n-heptane on an oxygen-modified molybdenum carbide catalyst[J]. Ind Eng Chem Res, 1994, 33(2): 1657-1664. https://www.researchgate.net/publication/231366609_Isomerization_of_n-Heptane_on_an_Oxygen-Modified_Molybdenum_Carbide_Catalyst
    [16] PARK H K. A general surface propertiesand reactivity of supported and unsupported molybdenum nitride catalysts[J]. Appl Catal, 1997, 150(1): 21-35. doi: 10.1016/S0926-860X(96)00297-9
    [17] KIM D. CoMo bimetallic nitrides catalysts for thiophene HDS[J]. Catal Lett, 1997, 43(1): 91-95.
    [18] PAUL A. Thiophene HDS over alumina-supported molybdenum nitride and carbide: Adsorption sites,catalytic activities and nature of the active surface[J]. J Catal, 1996, 164(1): 109-121. doi: 10.1006/jcat.1996.0367
    [19] SCHLATTER J C, OYAMA S T. Catalytic behavior of selected transition-metal carbide, nitride and borides in the HDN of quinolin[J]. Ind Eng Chem Res, 1988, 27(9): 1648-1653. doi: 10.1021/ie00081a014
    [20] LI S, LEE J S, HYEON T, SUSLICK K S. Catalytic hydrodenitrogenation of indole over molybdenum nitride and carbides with different structures[J]. Appl Catal A: Gen, 1999, 184(1): 1-9. doi: 10.1016/S0926-860X(99)00044-7
    [21] SUNDARAMURTHY V, DALAI A K, ADJAYE J. Comparison of P-containing γ-Al2O3 supported Ni-Mo bimetallic carbide, nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen[J]. Appl Catal A: Gen, 2006, 311(1): 155-163.
    [22] JEONG G. HDN of pyridine over molybdenum carbide[J]. J Catal, 1995, 154(1): 33-40. doi: 10.1006/jcat.1995.1143
    [23] COLLING C W, THOMPSON L T. The structure and function of supported molybdenum nitride hydrodenitrogenation catalysts[J]. J Catal, 1994, 146(1): 193-203. doi: 10.1016/0021-9517(94)90022-1
    [24] MIGA K, STANCZYK K, SAYAG C, BRODZKI D, DJÉGA-MARIADASSOU G. Bifunctional behavior of bulk MoOxNy and nitrided supported NiMo catalyst in hydrodenitrogenation of indole[J]. J Catal, 1999, 183(1): 63-68. doi: 10.1006/jcat.1998.2381
    [25] OZKAN U S, ZHANG L, CLARK P A. Performance and postreaction characterization of γ-Mo2N catalysts in simultaneous hydrodesulfurization and hydrodenitrogenation reactions[J]. J Catal, 1997, 172(2): 294-306. doi: 10.1006/jcat.1997.1873
    [26] NAGAI M, KURAKAMI T, OMI S. Activity of carbided molybdenum-alumina for CO2 hydrogenation[J]. Catal Today, 1998, 45(1/4): 235-239.
    [27] NAGAI M, OSHIKAWA K, KURAKAMI T, MIYAO T, OMI S. Surface properties of carbided molybdenum-alumina and its activity for CO2 hydrogenation[J]. J Catal, 1998, 180(1): 14-23. doi: 10.1006/jcat.1998.2262
    [28] LEE J S, YEOM M H, PARK K Y, NAM I S, CHUNG J S, KIM Y G, MOON S H. Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts[J]. J Catal, 1991, 128(1): 126-136. doi: 10.1016/0021-9517(91)90072-C
    [29] YANG S, LI C, XU J, XIN Q. In situ probing of surface sites on supported molybdenum nitride catalyst by CO adsorption[J]. Chem Commun, 1997, 127(13): 1247-1248. https://www.researchgate.net/publication/244536725_In_situ_probing_of_surface_sites_on_supported_molybdenum_nitride_catalyst_by_CO_adsorption
    [30] AFANASIEV P. New single source route to the molybdenum nitride Mo2N[J]. Inorg Chem, 2002, 41(21): 5317-5319. doi: 10.1021/ic025564d
    [31] WANG H M, LI W, ZHANG M H. New approach to the synthesis of bulk and supported bimetallic molybdenum nitrides[J]. Chem Mater, 2005, 17(12): 3262-3267. doi: 10.1021/cm047735d
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  54
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-09
  • 修回日期:  2015-12-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-04-30

目录

    /

    返回文章
    返回