留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子交换树脂固态胺复合材料的制备、表征及CO2吸附

梅立斌 刘新民

梅立斌, 刘新民. 离子交换树脂固态胺复合材料的制备、表征及CO2吸附[J]. 燃料化学学报(中英文), 2017, 45(7): 880-888.
引用本文: 梅立斌, 刘新民. 离子交换树脂固态胺复合材料的制备、表征及CO2吸附[J]. 燃料化学学报(中英文), 2017, 45(7): 880-888.
MEI Li-bin, LIU Xin-min. Preparation, characterization and CO2 adsorption of ion exchange resin supported solid amine adsorbents[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 880-888.
Citation: MEI Li-bin, LIU Xin-min. Preparation, characterization and CO2 adsorption of ion exchange resin supported solid amine adsorbents[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 880-888.

离子交换树脂固态胺复合材料的制备、表征及CO2吸附

基金项目: 

山东省科学技术发展计划项目 2010GGX10709

详细信息
    通讯作者:

    刘新民, E-mail:lxm220@qust.edu.cn

  • 中图分类号: O063

Preparation, characterization and CO2 adsorption of ion exchange resin supported solid amine adsorbents

Funds: 

the Shandong Province Science and Technology Development Project 2010GGX10709

  • 摘要: 以离子交换树脂(D001)为载体,四乙烯五胺(TEPA)为改性剂,采用三种不同的方法制备了一系列固态胺吸附剂。采用N2吸附-脱附、傅里叶变换红外光谱(FT-IR)、热重分析(TGA)等手段对吸附剂进行表征。在固定床反应器中考察了TEPA负载量、吸附温度、进气流量和CO2分压等因素对CO2吸附性能的影响。结果表明,配位法制得的固态胺吸附剂分散性和稳定性较好,且在TEPA负载量为40%,吸附温度为65℃,进气流量为40 mL/min时有最大CO2吸附量达4 mmol/g。经过10次吸附-脱附循环实验后,CO2吸附量下降3.98%。热力学、动力学研究结果表明,CO2吸附是物理吸附和化学吸附的结果。
  • 图  1  不同制备方法和不同TEPA负载量下吸附剂的FT-IR谱图

    Figure  1  FT-IR spectra of adsorbent with different preparation methods(a) and TEPA loadings(b)

    图  2  不同制备方法制得的吸附剂的TGA曲线

    Figure  2  TGA curves of adsorbent with different preparation methods

    图  3  不同制备方法制得的吸附剂的孔径分布

    Figure  3  Pore size distributions of adsorbent with different preparation methods

    图  4  不同制备方法和不同TEPA负载量下吸附剂的CO2吸附穿透曲线

    Figure  4  CO2 adsorption breakthrough curves of adsorbent with different preparation methods and TEPA loadings

    图  5  不同制备方法和不同TEPA负载量下吸附剂的CO2吸附能力和胺利用率

    Figure  5  CO2 adsorption capacity (a) and amine utilization (b) of different preparation methods and TEPA loading adsorbents

    图  6  不同温度时D001-Cu-40%TEPA的CO2吸附量

    Figure  6  CO2 adsorption capacity of D001-Cu-40%TEPA at different temperatures

    图  7  不同进气流量时D001-Cu-40%TEPA的穿透曲线和CO2吸附量

    Figure  7  Breakthrough curves (a) and CO2 adsorption capacity (b) of D001-Cu-40%TEPA at different influent gas velocities

    图  8  D001-30%TEPA、D00-H-30%TEPA和D001-Cu-40%TEPA对CO2的循环吸附量

    Figure  8  Cyclic CO2 adsorption capacity of D001-30%TEPA, D001-H-30%TEPA and D001-Cu-40%TEPA

    图  9  不同吸附量时lnp对1/T的回归线

    Figure  9  Regression lines of lnp versus 1/T at different adsorbing capacities

    图  10  D001-Cu-40%TEPA的吸附量实验数据与动力学模型拟合

    Figure  10  Experimental adsorption capacity of D001-Cu-40%TEPA and its corresponding fitting curves with kinetic models

    表  1  不同制备方法制得的吸附剂的孔结构参数

    Table  1  Pore structural parameters of adsorbent with different preparation methods

    表  2  在不同温度下CO2分压对D001-Cu-40%TEPA吸附性能的影响

    Table  2  Effect of CO2 partial pressure on the adsorption performance of D001-Cu-40%TEPA

    表  3  D001-Cu-40%TEPA对CO2的等量吸附热

    Table  3  Isosteric heat of CO2 adsorption on D001-Cu-40%TEPA

    表  4  D001-Cu-40%TEPA的CO2吸附动力学模型拟合参数

    Table  4  Parameters of kinetic models for CO2 adsorption of D001-Cu-40%TEPA

  • [1] TSENG R L, WU F C, JUANG R S. Adsorption of CO2 at atmospheric pressure on activated carbons prepared from melamine-modified phenol-formaldehyde resins[J]. Sep Purif Technol, 2015, 140(1):53-60. http://www.sciencedirect.com/science/article/pii/S1383586614006972
    [2] NILANTHA P W, MIETEK J. Activated carbon spheres for CO2 adsorption[J]. ACS Appl Mater Interfaces, 2013, 5(2):1849-1855. doi: 10.1021/am400112m
    [3] ARUNKUMAR S, ZHAO A, GEORGE K H, PARTHA S, RAJENDER G. Post-combustion CO2 capture using solid Sorbents:A review[J]. Ind Eng Chem Res, 2012, 51(10):1438-1463. doi: 10.1021/ie200686q
    [4] FIGUEROA J D, FOUT T, PLASYNSKI S, MCILVERIED H, SRIVASTAVA R D. Advances in CO2capture technology-The U.S. department of energy's carbon sequestration program:A review[J]. Int J Green Gas Con, 2008, 2(7):9-20. http://www.sciencedirect.com/science/article/pii/S1750583607000941
    [5] WANG X, GUO Q J, KONG T T. Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2capture[J]. Chem Eng J, 2015, 273(3):472-480. http://www.sciencedirect.com/science/article/pii/s1385894715004258
    [6] KHATRI R A, CHUANG S C, SONG Y. Thermal and chemical stability of regenerable solid amine sorbent for CO2 capure[J]. Energy Fuels, 2006, 20(4):1514-1520. doi: 10.1021/ef050402y
    [7] 刘之琳, 腾阳, 张锴, 曹晏, 潘伟平.不同有机胺修饰MCM-41的CO2吸附性能和热稳定性[J].燃料化学学报, 2013, 41(4):469-476. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18168.shtml

    LIU Zhi-lin, TENG Yang, ZHANG Kai, CAO Yan, PAN Wei-ping. The CO2adsorption and thermal stability of MCM-41 modified by different organic amines[J]. J Fuel Chem Technol, 2013, 41(4):469-476. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18168.shtml
    [8] LEE S, FILBURN T P, GRAY M, PARK J W, SONG H J. Screening test of solid amine sorbents for CO2 capture[J]. Ind Eng Chem Res. 2008, 47(8):7419-7423. doi: 10.1021/ie8006984
    [9] GRAY M L, HOFFMAN J S, HREHA D C, FAUTH D J, HEDGES S W, CHAMPAGNE K J, PENNLINE H W. Parametric study of solid amine sorbents for the capture of carbon dioxide[J]. Energy Fuels, 2009, 23(9):4840-4844. doi: 10.1021/ef9001204
    [10] ALESI W R, KITCHIN J R. Evaluation of a primary amine-functionalized ion-exchange resin for CO2 capture[J]. Ind Eng Chem Res, 2012, 51(5):6907-6915. doi: 10.1021/ie300452c
    [11] 张学诗, 刘新民.改性分子筛二氧化碳捕集材料的制备及其性能[J].环境工程学报, 2015, 9(10):4995-4999. doi: 10.12030/j.cjee.20151060

    ZHANG Xue-shi, LIU Xin-min. Preparation and performance of modified molecular sieve for carbon dioxide capture[J]. J Environ Eng, 2015, 9(10):4995-4999. doi: 10.12030/j.cjee.20151060
    [12] HU J X, WANG G C, JIANG T. Preparation and performance of sulphonated polystyrene[J]. Colloid Polym Sci, 2012, 30(1):36-38. http://www.whxb.pku.edu.cn/EN/abstract/abstract26737.shtml
    [13] WANG X, CHEN L L, GUO Q J. Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture[J]. Chem Eng J, 2015, 260(9):573-581. http://www.sciencedirect.com/science/article/pii/S1385894714011723
    [14] CHEN Z H, DENG S B, WEI H R, WANG B, HUANG J, YU G. Polyethylenimine-impregnated resin for high CO2 adsorption:An efficient adsorbent for capture from simulated flue gas and ambient air[J]. ACS Appl Mater Interfaces, 2013, 5(6):6937-6945. http://www.ncbi.nlm.nih.gov/pubmed/23808655
    [15] 陈琳琳, 王霞, 郭庆杰.四乙烯五胺修饰介孔硅胶吸附CO2性能的研究[J].燃料化学学报, 2015, 43(1):108-115. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18563.shtml

    CHEN Lin-lin, WANG Xia, GUO Qing-jie. Study on CO2 adsorption properties of tetraethylenepentamine modified mesoporous silica gel[J]. J Fuel Chem Technol, 2015, 43(1):108-115. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18563.shtml
    [16] MEILS S D, WANG S X, MARTHA A, ARLLANO T, ROBERT J F. CO2 utilization with a novel dual function material (DFM) for capture and catalytic conversion to synthetic natural gas:An update[J]. J CO2 Util, 2016, 15(9):65-71. http://www.sciencedirect.com/science/article/pii/S2212982016300695
    [17] HUANG H Y, YANG R T, CHINN D, MUNSON C L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas[J]. Ind Eng Chem Res, 2003, 42(12):2427-2433. doi: 10.1021/ie020440u
    [18] RODRIGO S G, ABDELHAMID S. Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2:Kinetics and breakthrough curves[J]. Chem Eng J, 2010, 161(7):182-190.
    [19] LOGANATHAN S, TIKMANI M, EDUBILLI S. CO2 adsorption kinetics on mesoporous silica under wide range of pressure and temperature[J]. Chem Eng J, 2014, 256(11):1-8. http://www.sciencedirect.com/science/article/pii/S1385894714008407
    [20] ALIAKBAR H G, ABDELHAMID S. CO2 capture on polyethylenimine-impregnated hydrophobic mesoporous silica:Experimental and kinetic modeling[J]. Chem Eng J, 2011, 173(1):72-79. doi: 10.1016/j.cej.2011.07.038
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  30
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-08
  • 修回日期:  2017-05-06
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-07-10

目录

    /

    返回文章
    返回