留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米纤维负载铁钴镍硼化物可控制备及其电催化析氢性能研究

梁珂明 姜彬 黄焱 鲁萌萌 王秋静

梁珂明, 姜彬, 黄焱, 鲁萌萌, 王秋静. 碳纳米纤维负载铁钴镍硼化物可控制备及其电催化析氢性能研究[J]. 燃料化学学报(中英文), 2020, 48(10): 1270-1280.
引用本文: 梁珂明, 姜彬, 黄焱, 鲁萌萌, 王秋静. 碳纳米纤维负载铁钴镍硼化物可控制备及其电催化析氢性能研究[J]. 燃料化学学报(中英文), 2020, 48(10): 1270-1280.
LIANG Ke-ming, JIANG Bin, HUANG Yan, LU Meng-meng, WANG Qiu-jing. Controllable synthesis of carbon nanofibers with plated FeCoNiB as high performance composite catalysts for electrocatalytic hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1270-1280.
Citation: LIANG Ke-ming, JIANG Bin, HUANG Yan, LU Meng-meng, WANG Qiu-jing. Controllable synthesis of carbon nanofibers with plated FeCoNiB as high performance composite catalysts for electrocatalytic hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1270-1280.

碳纳米纤维负载铁钴镍硼化物可控制备及其电催化析氢性能研究

基金项目: 

国家自然科学基金 21902127

详细信息
  • 中图分类号: O646

Controllable synthesis of carbon nanofibers with plated FeCoNiB as high performance composite catalysts for electrocatalytic hydrogen evolution

Funds: 

The National Natural Science Foundation of China 21902127

More Information
  • 摘要: 通过乙醇催化燃烧法制备了碳纳米纤维(CNFs),采用化学沉积法在CNFs载体上负载铁钴镍硼化物(FeCoNiB),并以多种测试手段对其表征,研究了化学沉积工艺条件对FeCoNiB粒径、分散、成分及结构的影响,建立了碳纳米纤维负载的铁钴镍硼化物(FeCoNiB/CNFs)可控制备方法。采用电化学测试手段研究了FeCoNiB/CNFs在碱性环境下的氢气析出反应(HER)催化性能。结果表明,在100 mA/cm2的电流密度下,FeCoNiB/CNFs的过电位仅为366 mV,塔菲尔斜率低至41 mV/dec;在持续10 h的稳定性测试中电位衰减幅度很小,基本保持不变。这说明FeCoNiB/CNFs制备成本低,但其高稳定性可媲美贵金属的高催化活性HER催化剂;该研究可为非贵金属HER催化剂的研制及低成本电解水制氢技术的规模化应用提供参考。
  • 图  1  不同主盐浓度条件下((a)-(c))和不同反应时间下((d)-(f))合成FeCoNiB/CNFs的SEM照片

    Figure  1  SEM images of FeCoNiB/CNFs synthesized with different main salt concentrations ((a)-(c)) and different reaction times ((d)-(f))

    图  2  CNFs ((a), (b))和FeCoNiB/CNFs ((c), (d))不同放大倍数的SEM照片; FeCoNiB/CNFs的EDS能谱分析图(e)和元素映射图((f)-(k))

    Figure  2  SEM images of CNFs ((a) and (b)) and FeCoNiB/CNFs ((c) and (d)) with different magnifications EDS image (e) and elemental maps ((f)-(k)) of FeCoNiB/CNFs

    图  3  FeCoNiB/CNFs的TEM照片((a), (b))、HRTEM照片(c)以及XRD谱图(d)

    Figure  3  TEM image ((a) and (b)), HRTEM image (c) and XRD pattern (d) of FeCoNiB/CNFs

    图  4  FeCoNiB/CNFs的XPS能谱图(a), FeCoNiB/CNFs中B 1s、O 1s、Fe 2p、Co 2p、Ni 2p的高分辨XPS能谱图((b)-(f))

    Figure  4  Overscan XPS spectrum (a) as well as the B 1s (b), O 1s (c), Fe 2p (d), Co 2p (e) and Ni 2p (f) XPS spectra of FeCoNiB/CNFs

    图  5  CNFs、FeB/CNFs、CoB/CNFs、NiB/CNFs、FeCoB/CNFs、FeNiB/CNFs、CoNiB/CNFs、FeCoNiB/CNFs和Pt/C/CNFs在1.0 mol/L KOH溶液中测得的Cdl

    Figure  5  Electrochemical double-layer capacitance of CNFs, FeB/CNFs, CoB/CNFs, NiB/CNFs, FeCoB/CNFs, FeNiB/CNFs, CoNiB/CNFs, FeCoNiB/CNFs and Pt/C/CNFs in 1.0 mol/L KOH solution

    图  6  CNFs、FeB/CNFs、CoB/CNFs、NiB/CNFs、FeCoB/CNFs、FeNiB/CNFs、CoNiB/CNFs、FeCoNiB/CNFs和Pt/C/CNFs在1.0 mol/L KOH溶液中的LSV曲线(a)以及塔菲尔斜率图(b)

    Figure  6  Linear sweep voltammetry (LSV) curves (a) and Tafel plots (b) of CNFs, FeB/CNFs, CoB/CNFs, NiB/CNFs, FeCoB/CNFs, FeNiB/CNFs, CoNiB/CNFs, FeCoNiB/CNFs and Pt/C/CNFs in 1.0 mol/L KOH solution

    图  7  CNFs、FeB/CNFs、CoB/CNFs、NiB/CNFs、FeCoB/CNFs、FeNiB/CNFs、CoNiB/CNFs和FeCoNiB/CNFs在1.0 mol/L KOH中的电化学阻抗谱图

    Figure  7  Nyquist plots of electrochemical impedance spectra (EIS) of CNFs, FeB/CNFs, CoB/CNFs, NiB/CNFs, FeCoB/CNFs, FeNiB/CNFs, CoNiB/CNFs and FeCoNiB/CNFs in 1.0 mol/L KOH

    图  8  用计时电位法测试FeCoNiB/CNFs在1.0 mol/L KOH中的稳定性; 插图为三电极体系下电解水产氢的照片

    Figure  8  Catalytic stability of FeCoNiB/CNFs, as investigated by chronopotentiometry (CP) in 1.0 mol/L KOH solutions (insert: photo of electrolytic water splitting with a three-electrode system)

    表  1  主要化学试剂基本信息

    Table  1  Basic information of main chemical reagents

    Reagent Chemical formula Purity Manufacturer
    Copper sheet Cu AR Sinopharm Group Chemical Reagent Co., Ltd
    Alumina polishing powder Al2O3 85% Sinopharm Group Chemical Reagent Co., Ltd
    Potassium hydroxide KOH AR Tianjin Shengao Chemical Reagent Co., Ltd
    Anhydrous ethanol C2H5OH AR Guangdong Guanghua Technology Co., Ltd
    Isopropanol (CH3) 2CHOH AR Guangdong Guanghua Technology Co., Ltd
    Ferric chloride hexahydrate FeCl3·6H2O AR Shanghai Aladdin Biochemical Technology Co., Ltd
    Nickel sulfate hexahydrate NiSO4·6H2O AR Shanghai Aladdin Biochemical Technology Co., Ltd
    Cobalt sulfate heptahydrate CoSO4·7H2O AR Shanghai Aladdin Biochemical Technology Co., Ltd
    Ferrous sulfate heptahydrate FeSO4·7H2O AR Shanghai Macklin Biochemical Technology Electric Co., Ltd
    Sodium citrate Na3C6H5O7 98% Shanghai Aladdin Biochemical Technology Co., Ltd
    Dimethylaminomethylborane C2H10BN 10% Shanghai Aladdin Biochemical Technology Co., Ltd
    Perfluorinated resin solution nafion 5% Shanghai Macklin Biochemical Technology Electric Co., Ltd
    Platinum carbon catalyst Pt/ C 20% Shanghai Macklin Biochemical Technology Electric Co., Ltd
    下载: 导出CSV

    表  2  本研究与各种已开发的非贵金属析氢电催化剂在碱性条件下的催化性能

    Table  2  Comparison in the catalytic performance for HER between the FeCoNiB/CNFs catalyst of this study and various non-precious metal electrocatalysts reported in literature under alkaline conditions

    Electrocatalyst Electrolyte Overpotential / mV Tafel / (mV·dec-1) Reference
    FeCoNiB/CNFs 1. 0 mol/ L KOH η100=366 41 this study
    NiCoFeB 1. 0 mol/ L KOH η10=345 98 [33]
    Co2B-500 1. 0 mol/ L KOH η10≈780 177 [45]
    Co-B/ CC 1. 0 mol/ L KOH η100≈370 - [15]
    Ni NP 1. 0 mol/ L KOH η100≈480 167 [46]
    Ni/ Fe NP 1. 0 mol/ L KOH η100≈510 212 [46]
    Fe NP 1. 0 mol/ L KOH η100≈730 186 [46]
    η10 = overpotential for HER to achieve-10 mA/cm2; η100 = overpotential for HER to achieve-100 mA/cm2; CC: carbon cloth; NP: nanoparticles
    下载: 导出CSV
  • [1] 梁馨元, 施筱萱, 赵悦君.电催化析氢反应及析氢催化剂研究进展[J].化工管理, 2019, (7):68-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hggl201907045

    LIANG Xin-yuan, SHI You-xuan, ZHAO Yue-jun. Research progress of electrocatalytic hydrogen evolution reaction and hydrogen evolution catalyst[J]. Chem Ent Manage, 2019, (7):68-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hggl201907045
    [2] 赵永志, 蒙波, 陈霖新, 王赓, 郑津洋, 顾超华, 张鑫, 张俊峰.氢能源的利用现状分析[J].化工进展, 2015, 34(9):3248-3255. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201509008

    ZHAO Yong-zhi, MENG Bo, CHEN Lin-xin, WANG Geng, ZHENG Jin-yang, GU Chao-hua, ZHANG Xin, ZHANG Jun-feng. Analysis of utilization status of hydrogen energy[J]. Chem Ind Eng Prog, 2015, 34(9):3248-3255. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201509008
    [3] ARIHARAN A, VISWANATHAN B, NANDHAKUMAR V. Hydrogen storage on boron substituted carbon materials[J]. Int J Hydrogen Energy, 2016, 41(5):3527-3536. doi: 10.1016/j.ijhydene.2015.12.169
    [4] 佟珊珊, 王雪靖, 李庆川, 韩晓军.基于碳纤维材料基底的电解水制氢催化剂的研究进展[J].分析化学, 2016, 44(9):1447-1457. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201609022

    TONG Shan-shan, WANG Xue-jing, LI Qing-chuan, HAN Xiao-jun. Research progress of hydrogen production catalysts based on carbon fiber materials[J]. Chin J Anal Chem, 2016, 44(9):1447-1457. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201609022
    [5] ZHANG J, ZHANG D, YANG Y, MA J, CUI S, LI Y, YUAN B. Facile synthesis of ZnCo2O4 mesoporous structures with enhanced electrocatalytic oxygen evolution reaction properties[J]. RSC Adv, 2016, 6(95):92699-92704. doi: 10.1039/C6RA14191A
    [6] SATHE B R, ZOU X, ASEFA T. Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction[J]. Catal Sci Technol, 2014, 4(7):2023-2030. doi: 10.1039/C4CY00075G
    [7] ZHU Q, QIU B, DU M, XING M, ZHANG J. Nickel boride cocatalyst boosting efficient photocatalytic hydrogen evolution reaction[J]. Ind Eng Chem Res, 2018, 57(24):8125-8130. doi: 10.1021/acs.iecr.8b01376
    [8] GUPTA S, PATEL N, MIOTELLO A, KOTHARI D C. Cobalt-boride:an efficient and robust electrocatalyst for hydrogen evolution reaction[J]. J Power Sources, 2015, 279:620-625. doi: 10.1016/j.jpowsour.2015.01.009
    [9] XU X, DENG Y, GU M, SUN B, LIANG Z, XUE Y, GUO Y, TIAN J, CUI H. Large-scale synthesis of porous nickel boride for robust hydrogen evolution reaction electrocatalyst[J]. Appl Surf Sci, 2019, 470:591-595. doi: 10.1016/j.apsusc.2018.11.127
    [10] LI H, WEN P, LI Q, DUN C, XING J, ADHIKARI S, JIANG L, CARROLL D L, GEYER S M. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting[J]. Adv Energy Mater, 2017, 7(17):1700513. doi: 10.1002/aenm.201700513
    [11] HAO W, WU R, ZHANG R, HA Y, CHEN Z, WANG L, YANG Y, MA X, SUN D, FANG F, GUO Y. Electroless plating of highly efficient bifunctional boride-based electrodes toward practical overall water splitting[J]. Adv Energy Mater, 2018, 8(26):1801372. doi: 10.1002/aenm.201801372
    [12] 李恩重, 杨大祥, 郭伟玲, 周新远, 王海斗, 徐滨士.碳纳米纤维的制备及其复合材料在军工领域的应用[J].材料导报, 2011, 25(S2):188-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000003011233

    LI En-chong, YANG Da-xiang, GUO Wei-ling, ZHOU Xin-yuan, WANG Hai-dou, XU Bin-shi. Preparation of carbon nanofibers and application of their composites in military industry[J]. Mater Rep, 2011, 25(S2):188-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000003011233
    [13] DÍAZ J A, MARTÍNEZ F M, ROMERO A, VALVERDE J L. Synthesis of carbon nanofibers supported cobalt catalysts for Fischer-Tropsch process[J]. Fuel, 2013, 111:422-429. doi: 10.1016/j.fuel.2013.04.003
    [14] 王赫, 王洪杰, 王闻宇, 金欣, 林童.聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J].材料导报, 2018, 32(5):730-734+748. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201805007

    WANG He, WANG Hong-jie, WANG Wen-yu, JIN Xin, LIN Tong. Application of polyacrylonitrile based carbon nanofibers as electrode materials for supercapacitors[J]. Mater Rep, 2018, 32(5):730-734+748. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201805007
    [15] SHENG M, WU Q, WANG Y, LIAO F, ZHOU Q, HOU J, WENG W. Network-like porous Co-Ni-B grown on carbon cloth as efficient and stable catalytic electrodes for hydrogen evolution[J]. Electrochem Commun, 2018, 93:104-108. doi: 10.1016/j.elecom.2018.06.017
    [16] NELIZE M A C, JOMAR L B F, CUONG P H, RICARDO V. Carbon nanofibers:A versatile catalytic support[J]. Mater Res Ibero Am J, 2008, 11(3):353-357. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392008000300020
    [17] VICENTE J, PARASKEVI P, PAULA S, JOSÉ L V, AMAYA R. Synthesis and characterization of ruthenium supported on carbon nanofibers with different graphitic plane arrangements[J]. Chem Eng J, 2011, 168(2):947-954. doi: 10.1016/j.cej.2011.02.024
    [18] 程进.乙醇作为碳源制备准一维碳纳米结构材料的研究[D].北京: 信息工程学院传感技术研究中心, 2007.

    CHENG Jin. Preparation of quasi one dimensional carbon nanostructured materials using ethanol as carbon source[D]. Beijing: Sensing Technology Research Center of Information Engineering Institute, 2007.
    [19] ZHI W S, JAKOB K, COLIN F D, IB C, JENS K N, THOMAS F J. Combining theory and experiment in electrocatalysis:Insights into materials design[J]. Science, 2017, 355(6321):eaad4998. doi: 10.1126/science.aad4998
    [20] GUPTA S, PATEL N, FERNANDES R, KADREKAR R. Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range[J]. Appl Catal B:Gnviron, 2016, 192:126-133. doi: 10.1016/j.apcatb.2016.03.032
    [21] CARLOS D R, ABEL H M, ROAL T S, MANUEL A R, JES'US G H. Measurement of mechanical properties of an electroless Ni-B coating using nanoindentation[J]. Ind Eng Chem Res, 2012, 51(22):7762-7768. doi: 10.1021/ie201760g
    [22] ZHANG L, LI S, TAN H, KHAN S U, MA Y, ZANG H, WANG Y, LI Y. MoP/Mo2C@C:A new combination of electrocatalysts for highly efficient hydrogen evolution over the entire pH range[J]. ACS Appl Mater Interfaces, 2017, 9(19):16270-16279. doi: 10.1021/acsami.7b03823
    [23] HOA V H, TRAN D T, LE T H, KIM H N, LEE H J. Hierarchically porous nickel-cobalt phosphide nanoneedle arrays loaded micro-carbon spheres as an advanced electrocatalyst for overall water splitting application[J]. Appl Catal B Gnviron, 2019, 253:235-245. doi: 10.1016/j.apcatb.2019.04.017
    [24] HUANG W, WANG F, QIU N, WU X, ZANG C, LI A, XU L. Enteromorpha prolifera-derived Fe3C/C composite as advanced catalyst for hydroxyl radical generation and efficient removal for organic dye and antibiotic[J]. J Hazard Mater, 2019, 378:120728. doi: 10.1016/j.jhazmat.2019.06.005
    [25] MASA J, SINEV I, MISTRY H, VENTOSA E, MATA M, ARBIOL J, MUHLER M, CUENYA B R, SCHUHMANN W. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution[J]. Adv Energy Mater, 2017, 7(17):1700381. doi: 10.1002/aenm.201700381
    [26] AN L, SUN Y, ZONG Y, LIU Q, GUO J, ZHANG X. Nickel iron boride nanosheets on rGO for active electrochemical water oxidation[J]. J Solid State Chem, 2018, 265:135-139. doi: 10.1016/j.jssc.2018.05.039
    [27] FAN X, PENG Z, YE R, ZHOU H, GUO X. M3C (M:Fe, Co, Ni) nanocrystals encased in graphene nanoribbons:an active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions[J]. ACS Nano, 2015, 9(7):7407-7418. doi: 10.1021/acsnano.5b02420
    [28] SUN J, ZHANG W, WANG S, REN Y, LIU Q, SUN Y, TANG L, GUO J, ZHANG X. Ni-Co-B nanosheets coupled with reduced graphene oxide towards enhanced electrochemical oxygen evolution[J]. J Alloys Compd, 2019, 776:511-518. doi: 10.1016/j.jallcom.2018.10.296
    [29] ZHOU C, MU J, QI Y, WANG Q, ZHAO X, YANG E. Iron-substituted Co-Ni phosphides immobilized on Ni foam as efficient self-supported 3D hierarchical electrocatalysts for oxygen evolution reaction[J]. Int J Hydrogen Energy, 2019, 44(16):8156-8165. doi: 10.1016/j.ijhydene.2019.02.053
    [30] THIRUMAL V, PANDURANGAN A, JAYAVEL R, ⅡANGOVAN R. Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications[J]. Synth Met, 2016, 220:524-532. doi: 10.1016/j.synthmet.2016.07.011
    [31] SAHOO M, SREENA K. P, VINAYAN B. P, RAMAPRABHU S. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery[J]. Mater Res Bull, 2015, 61:383-390. doi: 10.1016/j.materresbull.2014.10.049
    [32] HE J, WU T, CHEN S, MIAO R, SUIB S L. Structure-property relationship of graphene coupled metal (Ni, Co, Fe) (oxy)hydroxides for efficient electrochemical evolution of oxygen[J]. J Catal, 2019, 377:619-628. doi: 10.1016/j.jcat.2019.08.006
    [33] MASA J, WEIDE P, PEETERS D, SINEV I, XIA Wei, SUN Zhen-yu, SOMSEN C, MUHLER M, SCHUHMANN W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting:oxygen and hydrogen evolution[J]. Adv Energy Mater, 2016, 6(6):1502313. doi: 10.1002/aenm.201502313
    [34] LI C, ZHANG Z, WU M, LIU R. FeCoNi ternary alloy embedded mesoporous carbon nanofiber:an efficient oxygen evolution catalyst for rechargeable zinc-air battery[J]. Mater Lett, 2019, 238:138-142. doi: 10.1016/j.matlet.2018.11.160
    [35] WANG J, ZHANG W, ZHENG Z, LIU J, YU C, CHEN Y, MA K. Dendritic core-shell Ni@Ni(Fe)OOH metal/metal oxyhydroxide electrode for efficient oxygen evolution reaction[J]. Appl Surf Sci, 2019, 469:731-738. doi: 10.1016/j.apsusc.2018.10.232
    [36] LU M, WANG L, JIANG B, ZHENG J. An efficient electrocatalyst by electroless cobalt-nickel-phosphorus alloy plating on three-dimensional graphene for hydrogen evolution reaction[J]. J Electrochem Soc, 2019, 166(2):D69-D76. doi: 10.1149/2.1261902jes
    [37] XU J, LI J, XIONG D, ZHANG B, LIU Y, WU K H, AMORIM I, LI W, LIU L. Trends in activity for the oxygen evolution reaction on transition metal (M=Fe, Co, Ni) phosphide pre-catalysts[J]. Chem Sci, 2018, 9(14):3470-3476. doi: 10.1039/C7SC05033J
    [38] NACHIMUTHU S, LAI P J, JIANG J C. Efficient hydrogen storage in boron doped graphene decorated by transition metals-A first-principles study[J]. Carbon, 2014, 73:132-140. doi: 10.1016/j.carbon.2014.02.048
    [39] SANKARAN M, VISWANATHAN B, MURTHY S. Boron substituted carbon nanotubes-How appropriate are they for hydrogen storage?[J]. Int J Hydrogen Energy, 2008, 33(1):393-403. doi: 10.1016/j.ijhydene.2007.07.042
    [40] SURYANTO B H R, WANG Yun, HOCKING R K, ADAMSON W, ZHAO C. Overall electrochemical splitting of water at the heteroge-neous interface of nickel and iron oxide[J]. Nat Commun, 2019, 10:5599-5609. doi: 10.1038/s41467-019-13415-8
    [41] TIAN Y, YE Y, WANG X, PENG S, WEI Z, ZHANG X, LIU W. Three-dimensional N-doped, plasma-etched graphene:Highly active metal-free catalyst for hydrogen evolution reaction[J]. Appl Catal A:Gen, 2017, 529:127-133. http://www.sciencedirect.com/science/article/pii/S0926860X16305166
    [42] SHINAGAWA T, GARCIA E A T, TAKANABE K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J]. Sci Rep, 2015, 5:13801. doi: 10.1038/srep13801
    [43] 曹楚南.腐蚀电化学原理[M]. 3版.北京:化学工业出版社, 2008.

    CAO Chu-nan. Principle of Corrosion Electrochemistry[M]. 3rd ed. Beijing:Chemical Industry Press, 2008.
    [44] MAO H, GUO X, FU Y, YANG H, ZHANG Y, ZHANG R, SONG X. Enhanced electrolytic oxygen evolution by the synergistic effects of trimetallic FeCoNi boride oxides immobilized on polypyrrole/reduced graphene oxide[J]. J Mater Chem A, 2020, 8(4):1821-1828. doi: 10.1039/C9TA10756H
    [45] QU K, ZHENG Y, ZHANG X, DAVEY K, DAI S, QIAO S. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms[J]. ACS Nano, 2017, 11(7):7293-7300. doi: 10.1021/acsnano.7b03290
    [46] GARCÍA O D A, JAIMES R, VAZQUEZ A J, LARA R H. The kinetic parameters of the oxygen evolution reaction (OER) calculated on inactive anodes via EIS transfer functions:·OH formation[J]. J Electrochem Soc, 2017, 164(11):E3321-E3328. doi: 10.1149/2.0321711jes
    [47] NSANZIMANA J M V, DANGOL R, REDDU V, DOU S, PENG Y, DINH K N, HUANG Z, YAN Q, WANG X. Facile synthesis of amorphous ternary metal borides-reduced graphene oxide hybrid with superior oxygen evolution activity[J]. ACS Appl Mater Interfaces, 2019, 11(1):846-855. doi: 10.1021/acsami.8b17836
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  159
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-29
  • 修回日期:  2020-09-07
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-10-10

目录

    /

    返回文章
    返回