留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液相体系Ru-Co3O4催化CO2加氢制甲烷过程中的溶剂效应研究

宋英健 崔晓静 邓天昇 秦张峰 樊卫斌

宋英健, 崔晓静, 邓天昇, 秦张峰, 樊卫斌. 液相体系Ru-Co3O4催化CO2加氢制甲烷过程中的溶剂效应研究[J]. 燃料化学学报(中英文), 2021, 49(2): 178-185. doi: 10.1016/S1872-5813(21)60013-0
引用本文: 宋英健, 崔晓静, 邓天昇, 秦张峰, 樊卫斌. 液相体系Ru-Co3O4催化CO2加氢制甲烷过程中的溶剂效应研究[J]. 燃料化学学报(中英文), 2021, 49(2): 178-185. doi: 10.1016/S1872-5813(21)60013-0
SONG Ying-jian, CUI Xiao-jing, DENG Tian-sheng, QIN Zhang-feng, FAN Wei-bin. Solvent effect on the activity of Ru-Co3O4 catalyst for liquid-phase hydrogenation of CO2 into methane[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 178-185. doi: 10.1016/S1872-5813(21)60013-0
Citation: SONG Ying-jian, CUI Xiao-jing, DENG Tian-sheng, QIN Zhang-feng, FAN Wei-bin. Solvent effect on the activity of Ru-Co3O4 catalyst for liquid-phase hydrogenation of CO2 into methane[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 178-185. doi: 10.1016/S1872-5813(21)60013-0

液相体系Ru-Co3O4催化CO2加氢制甲烷过程中的溶剂效应研究

doi: 10.1016/S1872-5813(21)60013-0
基金项目: 国家自然科学基金(U1910203, 21972159)资助
详细信息
    通讯作者:

    E-mail:cuixj@sxicc.ac.cn

    fanwb@sxicc.ac.cn

  • 中图分类号: O643.36; X773

Solvent effect on the activity of Ru-Co3O4 catalyst for liquid-phase hydrogenation of CO2 into methane

Funds: The project was supported by National Natural Science Foundation of China (U1910203, 21972159)
  • 摘要: 采用共沉淀法制备了Ru-Co3O4催化剂,考察了其在液相体系的CO2加氢制甲烷催化性能,并与浸渍法制备的Ru基催化剂(Ru/SiO2、Ru/CeO2、Ru/ZrO2、Ru/TiO2)进行了对比,探讨了不同溶剂(水、正丁醇、1, 4-丁内酯、DMF、十氢萘、环己烷、异辛烷)对催化性能的影响规律。发现Ru-Co3O4具有较高的加氢催化活性和产物选择性,十氢萘和异辛烷作溶剂显示出良好的催化性能。在200 °C及H2/CO2 = 3∶1(v/v, 4 MPa)条件下,CO2转化率达45.6%,CH4的选择性约97%。同位素标记实验和原位漫反射红外光谱结果表明,十氢萘和异辛烷中的叔碳离子可以起到较强的供氢作用,从而提高了催化活性。
  • 图  1  Ru-Co3O4的SEM((a)、(b))和TEM照片(c)

    Figure  1  SEM images ((a), (b)) and TEM images (c) of Ru-Co3O4

    图  2  不同焙烧样品的XRD谱图

    1: Co3O4; 2: SiO2; 3: Ru; 4: CeO2; 5, 6: the characteristic peaks of TiO2 with different crystal forms (5 is auatase and 6 is rutile); 7: ZrO2

    Figure  2  XRD patterns of calcined catalysts (a): Co3O4; (b): Ru-Co3O4; (c): Ru-SiO2; (d): Ru-CeO2; (e): Ru-ZrO2; (f): Ru-TiO2

    图  3  异辛烷标样(a)和氘代异辛烷(b)的核磁共振色谱

    Figure  3  Nuclear magnetic resonance chromatograms of standard isooctane (a) and of deuterated isooctane (b)

    图  4  室温下不同样品吸附十氢萘的漫反射红外吸附谱图

    Figure  4  DRIFTS spectra for adsorption of decalin on the surfaces of various samples at room temperature

    图  5  Ru-Co3O4催化剂表面CO2加氢的漫反射红外谱图:(a) 200 °C; (b) 不同温度下

    Figure  5  DRIFTS spectra of CO2 hydrogenation to CH4 at 200 oC on Ru-Co3O4 in CO2, decalin, (CO2+decalin), and DRIFTS spectrum of standard CH4 (from the bottom to the top direction) (a); and DRIFTS spectra of CO2 hydrogenation to CH4 at 200 oC on Ru-Co3O4 in (CO2+decalin) at different reaction temperatures (b)

    图  6  催化剂的H2-TPR谱图

    Figure  6  H2-TPR profiles of catalyst

    图  7  十氢萘溶剂中Ru-Co3O4表面CO2加氢生成甲烷的反应路径

    Figure  7  Schematic presentation for catalytic mechanism of CO2 hydrogenation to CH4 over Ru-Co3O4 in decalin solvent

    表  1  不同Ru-基催化剂液相CO2加氢制甲烷的催化性能

    Table  1  Catalytic results of various supported Ru catalysts for liquid-phase hydrogenation of CO2 to CH4

    EntryCatalystCO2
    conversion
    /%
    Selectivity of
    hydrocarbons/mol%
    CH4C2−5CO
    1Ru/SiO22.397.12.90
    2Ru/CeO25.498.81.20
    3Ru/ZrO211.397.92.10
    4Ru/TiO215.297.12.90
    5Ru-Co3O445.697.02.90.1
    6Co3O434.097.72.20.1
    reaction conditions: 100 mg of catalyst, 5 g decalin, 200 °C, initial pressure: 4 MPa of H2/CO2 gas (v/v = 3∶1), 1 h
    下载: 导出CSV

    表  2  不同溶剂中Ru-Co3O4催化剂上CO2液相加氢制甲烷性能的影响a

    Table  2  Catalytic results of Ru-Co3O4 for liquid-phase hydrogenation of CO2 to CH4 in different solventsa

    SolventCO2 conversion/%Product selectivity/%Solubility b/(mmol·L−1)
    CH4C2−5
    Water8.388.711.028.9
    Butyl alcohol21.488.711.187.2
    1,4- butyrolactone26.295.74.242.6
    DMF31.089.410.443.2
    n-Nonane31.998.51.593.5
    Decalin45.697.03.067.5
    Cyclohexane34.098.81.2
    Isooctane42.098.21.7
    a: reaction conditions: 100 mg of 1% Ru-Co3O4,5 g of solvent,200 °C,initial pressure: 4 MPa of H2/CO2 gas (v/v=3/1), 1 h; b: calculated by considering H2 filled in the reactor as standard gas
    下载: 导出CSV
  • [1] DRESSELHAUS M S, THOMAS I L. Alternative energy technologies[J]. Nature,2001,414(6861):332−337. doi: 10.1038/35104599
    [2] SAKAKURA T, CHOI J-C, YASUDA H. Transformation of carbon dioxide[J]. Chem Rev,2007,107(6):2365−2387. doi: 10.1021/cr068357u
    [3] GOEPPERT A, CZAUN M, JONES J-P, PRAKASH G K S, OLAH G A. Recycling of carbon dioxide to methanol and derived products-closing the loop[J]. Chem Soc Rev,2014,43(23):7995−8048. doi: 10.1039/C4CS00122B
    [4] POROSOFF M D, YAN B, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy Environ Sci,2016,9(1):62−73.
    [5] KONDRATENKO E V, MUL G, BALTRUSAITIS J, LARRAZABAL G O, PEREZ-RAMIREZ J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes[J]. Energy Environ Sci,2013,6(11):3112−3135.
    [6] HAVRAN V, DUDUKOVIC M P, LO C S. Conversion of methane and carbon dioxide to higher value products[J]. Ind Eng Chem Res,2011,50(12):7089−7100.
    [7] OLAJIRE A A. Recent progress on the nanoparticles-assisted greenhouse carbon dioxide conversion processes[J]. J CO2 Util,2018,24:522−547. doi: 10.1016/j.jcou.2018.02.012
    [8] BERTINI F, GLATZ M, GORGAS N, STOEGER B, PERUZZINI M, VEIROS L F, KIRCHNER K, GONSALVI L. Carbon dioxide hydrogenation catalysed by well-defined Mn(I) PNP pincer hydride complexes[J]. Chem Sci,2017,8(7):5024−5029. doi: 10.1039/C7SC00209B
    [9] GUNASEKAR G, PARK K, JEONG H, JUNG K-D, PARK K, YOON S. Molecular Rh(III) and Ir(III) catalysts immobilized on bipyridine-based covalent triazine frameworks for the hydrogenation of CO2 to formate[J]. Catalysts,2018,8(7):295. doi: 10.3390/catal8070295
    [10] SORDAKIS K, TSURUSAKI A, IGUCHI M, KAWANAMI H, HIMEDA Y, LAURENCZY G. Carbon dioxide to methanol: the aqueous catalytic way at room temperature[J]. Chem-Eur J,2016,22(44):15605−15608. doi: 10.1002/chem.201603407
    [11] DORNER R W, HARDY D R, WILLIAMS F W, DAVIS B H, WILLAUER H D. Influence of gas feed composition and pressure on the catalytic conversion of CO2 to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst[J]. Energy Fuels,2009,23(8):4190−4195. doi: 10.1021/ef900275m
    [12] VARGHESE J J, MUSHRIF S H. Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: a review[J]. React Chem Eng,2019,4(2):165−206. doi: 10.1039/C8RE00226F
    [13] HE Z, QIAN Q, MA J, MENG Q, ZHOU H, SONG J. Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions[J]. Angew Chem Int Ed,2016,55(2):737−741. doi: 10.1002/anie.201507585
    [14] FILONENKO G A, VRIJBURG W L, HENSEN E J M, PIDKO E A. On the activity of supported Au catalysts in the liquid phase hydrogenation of CO2 to formates[J]. J Catal,2016,343:97−105. doi: 10.1016/j.jcat.2015.10.002
    [15] CHENG S, ZENG Y, PEI Y, FAN K, QIAO M, ZONG B. Synthesis and catalysis of Pt/W-s-SBA-15 catalysts with short channel for glycerol hydrogenolysis to 1, 3-propanediol[J]. Acta Chim Sin,2019,77(10):1054−1062. doi: 10.6023/A19060219
    [16] NIE R, LIANG D, SHEN L, GAO J, CHEN P, HOU Z. Selective oxidation of glycerol with oxygen in base-free solution over MWCNTs supported PtSb alloy nanoparticles[J]. Appl Catal B: Environ,2012,127(30):212−220. doi: 10.1016/j.apcatb.2012.08.026
    [17] CHARY K V R, NARESH D, VISHWANATHAN V, SADAKANE M, UEDA W. Vapour phase hydrogenation of phenol over Pd/C catalysts: A relationship between dispersion, metal area and hydrogenation activity[J]. Catal Commun,2007,8(3):471−477. doi: 10.1016/j.catcom.2006.07.017
    [18] SALAVATI-NIASARI M, DAVAR F, MAZAHERI M, SHATERIAN M. Preparation of cobalt nanoparticles from [bis(salicylidene)cobalt(II)]–oleylamine complex by thermal decomposition[J]. J Magn Magn Mater,2008,320(3/4):575−578.
    [19] SHEN X, GARCES L-J, DING Y, LAUBERNDS K, ZERGER R P, AINDOW M, NETH E J, SUIB S L. Behavior of H2 chemisorption on Ru/TiO2 surface and its application in evaluation of Ru particle sizes compared with TEM and XRD analyses[J]. Appl Catal A: Gen,2008,335(2):187−195. doi: 10.1016/j.apcata.2007.11.017
    [20] BERTERO N M, APESTEGUÍA C R, MARCHI A J. Catalytic and kinetic study of the liquid-phase hydrogenation of acetophenone over Cu/SiO2 catalyst[J]. Appl Catal A: Gen,2008,349(1/2):100−109. doi: 10.1016/j.apcata.2008.07.014
    [21] LIU X, ZHOU W, YANG Y, CHENG K, KANG J. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9(20):4708−4718. doi: 10.1039/C8SC01597J
    [22] PRICE G L. Matrix Method for correction of mass spectra in deuterium-exchange applications[J]. Ind Eng Chem Res,1989,28(6):839−844. doi: 10.1021/ie00090a028
    [23] DAS T, DEO G. Synthesis, characterization and in situ DRIFTS during the CO2 hydrogenation reaction over supported cobalt catalysts[J]. J Mol Catal A: Chem,2011,350(1/2):75−82. doi: 10.1016/j.molcata.2011.09.008
    [24] HONG J, MARCEAU E, KHODAKOV A Y, GABEROVA L, GRIBOVAL-CONSTANT A, GIRARDON J-S, LA FONTAINE C, BRIOIS V. Speciation of ruthenium as a reduction promoter of silica-supported Co catalysts: A time-resolved in situ XAS investigation[J]. ACS Catal,2015,5(2):1273−1282. doi: 10.1021/cs501799p
    [25] BUSCA G, LORENZELLI V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal-oxide surfaces[J]. Mater Chem,1982,7(1):89−126. doi: 10.1016/0390-6035(82)90059-1
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  644
  • HTML全文浏览量:  233
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-14
  • 修回日期:  2020-11-02
  • 网络出版日期:  2021-02-25
  • 刊出日期:  2021-02-08

目录

    /

    返回文章
    返回