留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同制备方法对氧化铈结构及甲苯催化燃烧性能的影响

权燕红 苗超 李涛 王娜 武朦朦 张宁 赵金仙 任军

权燕红, 苗超, 李涛, 王娜, 武朦朦, 张宁, 赵金仙, 任军. 不同制备方法对氧化铈结构及甲苯催化燃烧性能的影响[J]. 燃料化学学报(中英文), 2021, 49(2): 211-219. doi: 10.1016/S1872-5813(21)60014-2
引用本文: 权燕红, 苗超, 李涛, 王娜, 武朦朦, 张宁, 赵金仙, 任军. 不同制备方法对氧化铈结构及甲苯催化燃烧性能的影响[J]. 燃料化学学报(中英文), 2021, 49(2): 211-219. doi: 10.1016/S1872-5813(21)60014-2
QUAN Yan-hong, MIAO Chao, LI Tao, WANG Na, WU Meng-meng, ZHANG Ning, ZHAO Jin-xian, REN Jun. Effect of preparation methods on the structure and catalytic performance of CeO2 for toluene combustion[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 211-219. doi: 10.1016/S1872-5813(21)60014-2
Citation: QUAN Yan-hong, MIAO Chao, LI Tao, WANG Na, WU Meng-meng, ZHANG Ning, ZHAO Jin-xian, REN Jun. Effect of preparation methods on the structure and catalytic performance of CeO2 for toluene combustion[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 211-219. doi: 10.1016/S1872-5813(21)60014-2

不同制备方法对氧化铈结构及甲苯催化燃烧性能的影响

doi: 10.1016/S1872-5813(21)60014-2
基金项目: 国家自然科学基金(21776194),山西省自然科学基金(201901D211055)资助
详细信息
    作者简介:

    权燕红,女,1981,山西文水,讲师,博士研究生,多相催化

    通讯作者:

    E-mail: renjun@tyut.edu.cn

  • 中图分类号: O643.32

Effect of preparation methods on the structure and catalytic performance of CeO2 for toluene combustion

Funds: The project was supported by the National Natural Science Foundation of China (21776194), the Natural Science Foundation of Shanxi Province of China (201901D211055)
More Information
    Corresponding author: Tel: 0351- 6018598.
  • 摘要: 采用溶胶-凝胶-超临界干燥法、水热法及共沉淀法分别合成了氧化铈气凝胶(CeO2-A)、纳米棒(CeO2-R)和纳米片(CeO2-F)。考察了不同形貌氧化铈的催化燃烧甲苯性能,通过多种方法分析表征了氧化铈样品的微观结构,讨论了不同方法制得的CeO2形貌结构对催化性能的影响。结果表明,CeO2-R和CeO2-F比表面积较低,并且仅暴露(111)晶面,催化燃烧甲苯活性较低。CeO2-A具有高比表面积和丰富的孔道结构,有利于反应物分子的吸附,而且同时暴露(100)和(111)两种活性晶面,增加了氧空位浓度(Osur/Olatt = 0.25)。此外,CeO2-A由于表面晶格氧移动性较强,有利于Ce3+/Ce4+氧化还原的循环,加快甲苯深度氧化反应的进行。因此,CeO2-A具有更加优异的催化燃烧甲苯活性,t50t90分别为223 和239 ℃,这主要归因于其大比表面积、高暴露活性晶面以及强晶格氧迁移性。
  • 图  1  不同制备方法得到的氧化铈TEM照片

    (a)−(c): CeO2-A; (d)−(f): CeO2-R; (g)−(i): CeO2-F

    Figure  1  TEM images of CeO2 prepared by different methods

    图  2  不同形貌氧化铈催化剂的XRD谱图

    Figure  2  XRD patterns of CeO2 catalysts with different morphologies

    图  3  不同形貌氧化铈催化剂的N2吸附-脱附等温线和孔径分布

    (a):CeO2-A;(b):CeO2-R;(c):CeO2-F

    Figure  3  N2 adsorption-desorption isotherms and pore size distributions of CeO2 catalysts with different morphologies

    图  4  不同形貌的氧化铈催化剂的H2-TPR谱图

    Figure  4  H2-TPR spectra of CeO2 catalysts with different morphologies

    图  5  不同形貌的氧化铈催化剂的O2-TPD谱图

    Figure  5  O2-TPD spectra of CeO2 catalysts with different morphologies

    图  6  不同形貌的氧化铈催化剂的拉曼光谱谱图

    a: CeO2-R; b: CeO2-F; c: CeO2-A

    Figure  6  Raman spectra of CeO2 with different morphologies

    图  7  不同形貌的氧化铈催化剂XPS谱图

    (a): Ce 3d; (b): O 1s

    Figure  7  XPS spectra of CeO2 catalysts with different morphologies

    图  8  不同形貌氧化铈催化剂对甲苯燃烧的催化性能

    Figure  8  Catalytic performance of CeO2 catalysts with different morphologies for toluene combustion reaction conditions: catalyst weight=100 mg, 1 g/L toluene, 20 % O2/N2, total flow rate=130 mL/min and GHSV=78000 mL/(g·h)

    图  9  CeO2-A催化剂催化燃烧甲苯稳定性测试

    Figure  9  Long period test of catalytic oxidation of toluene over CeO2-A at 260 ℃

    表  1  不同形貌氧化铈催化剂的织构性质

    Table  1  Structural properties of CeO2 catalysts with different morphologies

    CatalystSBETa/
    (m2·g−1)
    vtotalb/
    (cm3·g−1)
    Average pore
    diameterc d/nm
    Crystallite
    sizesd d/nm
    CeO2-A144.00.6015.610.6
    CeO2-R99.70.205.316.7
    CeO2-F18.40.036.015.5
    a: specific surface area was calculated using Brumauer-Emmett-Teller (BET) modelling;
    b: total pore volume was measured by single point adsorption at p/p0 = 0.99;
    c: most probable apertures calculated by BJH method;
    d: calculated by the Scherrer equation applied to the CeO2 (111) peak
    下载: 导出CSV

    表  2  不同形貌的氧化铈催化剂TPR表征

    Table  2  TPR results of CeO2 catalysts with different morphologies

    CatalystStarted reduction
    temperature t/℃
    H2 consumption
    below 600 ℃
    CeO2-A2815020
    CeO2-R3134292
    CeO2-F3283100
    下载: 导出CSV

    表  3  不同形貌氧化铈催化剂的表面元素分析

    Table  3  Surface element analysis of CeO2 catalysts with different morphologies

    CatalystCe3+/Ce4+Osur/OlattCe3+/Ce
    CeO2-A0.250.250.20
    CeO2-R0.230.220.19
    CeO2-F0.160.200.14
    下载: 导出CSV

    表  4  不同形貌氧化铈催化剂对甲苯燃烧的活性评价

    Table  4  Catalytic activity of different morphologies CeO2 catalysts for oxidation of toluene

    SamplePreparation methodToluene
    concentration/
    (g·L−1)
    WHSV/
    (mL·g−1·h−1)
    t50/
    t90/
    CeO2-Asol-gel178000223239
    CeO2-Rhydrothermal178000233250
    CeO2-Fprecipitation178000236259
    下载: 导出CSV
  • [1] 张嘉妮. “十三五”挥发性有机物总量控制情景分析[J]. 环境科学,2018,39(8):3544−3551.

    ZHANG Jia-ni. Scenario analyses of the volatile organic compound emission allowance and allocation in the 13th Five-Year period[J]. Chin J Environ Sci,2018,39(8):3544−3551.
    [2] 席劲瑛,武俊良,胡洪营,王灿. 工业VOCs气体处理技术应用状况调查分析[J]. 中国环境科学,2012,32(11):1955−1960. doi: 10.3969/j.issn.1000-6923.2012.11.005

    XI Jin-ying, WU Jun-liang, HU Hong-ying, WANG Can. Application status of industrial VOCs gas treatment techniques[J]. China Environ Sci,2012,32(11):1955−1960. doi: 10.3969/j.issn.1000-6923.2012.11.005
    [3] EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic compounds[J]. J Hazard Mater,2004,109(1/3):113−139. doi: 10.1016/j.jhazmat.2004.03.019
    [4] LU H, ZHOU Y, HUANG H, ZHANG B, CHEN Y. In-situ synthesis of monolithic Cu-Mn-Ce/cordierite catalysts towards VOCs combustion[J]. J Rare Earth,2011,29(9):855−860. doi: 10.1016/S1002-0721(10)60555-8
    [5] ZHANG P, LU H, ZHOU Y, ZHANG L, WU Z, YANG S, SHI H, ZHU Q, CHEN Y, DAI S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons[J]. Nat Commun,2015,6:8446−8455. doi: 10.1038/ncomms9446
    [6] LIAN W, YU Y, HE H, ZHANG Y, QIN X, WANG B. Oxygen vacancy clusters essential for the catalytic activity of CeO2 nanocubes for o-xylene oxidation[J]. Sci Rep,2017,1(7):12845−12850.
    [7] PENG R, SUN X, LI S, CHEN L, FU M, WU J, YE D. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene[J]. Chem Eng J,2016,306:1234−1246. doi: 10.1016/j.cej.2016.08.056
    [8] FENG Z, REN Q, PENG R, MO S, ZHANG M, FU M, CHEN L, YE D. Effect of CeO2 morphologies on toluene catalytic combustion[J]. Catal Today,2019,332:177−182. doi: 10.1016/j.cattod.2018.06.039
    [9] FENG Z, ZHANG M, REN Q, MO S, PENG R, YAN D, FU M, CHEN L, WU J, YE D. Design of 3-dimensionally self-assembled CeO2 hierarchical nanosphere as high efficiency catalysts for toluene oxidation[J]. Chem Eng J,2019,369:18−25. doi: 10.1016/j.cej.2019.03.051
    [10] LIAO Y, HE L, MAN C, CHEN L, FU M, WU J, YE D, HUANG B. Diameter-dependent catalytic activity of ceria nanorods with various aspect ratios for toluene oxidation[J]. Chem Eng J,2014,256:439−447. doi: 10.1016/j.cej.2014.07.014
    [11] LV J, SHEN Y, PENG L, GUO X, DING W. Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen[J]. Chem Commun (Camb),2010,46(32):5909−5911. doi: 10.1039/c0cc00777c
    [12] HUANG X, SUN H, WANG L, LIU Y, FAN K, CAO Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation[J]. Appl Catal B: Environ,2009,90(1/2):224−232. doi: 10.1016/j.apcatb.2009.03.015
    [13] PAN C, ZHANG D, SHI L. CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods[J]. J Solid State Chem,2008,181(6):1298−1306. doi: 10.1016/j.jssc.2008.02.011
    [14] 闫宁, 周安宁, 张亚刚, 杨志远, 贺新福, 张亚婷. CeO2的形貌特征对Ni/CeO2 催化剂CO甲烷化性能的影响[J]. 燃料化学学报,2020,48(4):466−475. doi: 10.3969/j.issn.0253-2409.2020.04.010

    YAN Ning, ZHOU An-ning, ZHANG Ya-gang, YANG Zhi-yuan, HE Xin-fu, ZHANG Ya-ting. Morphologic effect of CeO2 on the catalytic performance of Ni/CeO2 in CO methanation[J]. J Fuel Chem Technol,2020,48(4):466−475. doi: 10.3969/j.issn.0253-2409.2020.04.010
    [15] 李健. 富氢中一氧化碳选择氧化的铈基气凝胶催化剂的研究[D]. 内蒙古: 内蒙古工业大学, 2007.

    LI Jian. Studies on CeO2-based aerogel catalysts used for preferential oxidation of carbon monoxide in excess hydrogen[D]. Inner Mongolia: Inner Mongolia University of Technology, 2007.
    [16] KEMPAIAH D M, YIN S, SATO T. A facile and quick solvothermal synthesis of 3D microflower CeO2 and Gd: CeO2 under subcritical and supercritical conditions for catalytic applications[J]. CrystEngComm,2011,13(3):741−746. doi: 10.1039/C0CE00611D
    [17] TROVARELLI A, LLORCA J. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis?[J]. ACS Catal,2017,7(7):4716−4735. doi: 10.1021/acscatal.7b01246
    [18] BAI J, XU Z, ZHENG Y, YIN H. Shape control of CeO2 nanostructure materials in microemulsion systems[J]. Mater Lett,2006,60(9/10):1287−1290. doi: 10.1016/j.matlet.2005.11.016
    [19] WU K. SUN L, YAN C. Recent progress in well-controlled synthesis of ceria-based nanocatalysts towards enhanced catalytic performance[J]. Adv Energy Mater,2016,6(17):1600501. doi: 10.1002/aenm.201600501
    [20] ZHANG M, GUO S, ZHENG L, ZHANG G, HAO Z, KANG L, LIU Z. Preparation of NiMn2O4 with large specific surface area from an epoxide-driven sol-gel process and its capacitance[J]. Electrochim Acta,2013,87:546−553. doi: 10.1016/j.electacta.2012.09.085
    [21] RAO R, ZHANG Q, LIU H, YANG M, LING Q, ZHANG A. Formaldehyde-assisted hydrothermal synthesis of one-dimensional CeO2 and their morphology-dependent properties[J]. CrystEngComm,2012,14(18):5929−5936. doi: 10.1039/c2ce25644d
    [22] DAI Q, ZHANG Z, YAN J, WU J, JOHNSON G, SUN W, WANG X, ZHANG S, ZHAN W. Phosphate-functionalized CeO2 nanosheets for efficient catalytic oxidation of dichloromethane[J]. Environ Sci Technol,2018,52(22):13430−13437. doi: 10.1021/acs.est.8b05002
    [23] YAN D, MO S, SUN Y, REN Q, FENG Z, CHEN P, WU J, FU M, YE D. Morphology-activity correlation of electrospun CeO2 for toluene catalytic combustion[J]. Chemosphere,2020,247:125860. doi: 10.1016/j.chemosphere.2020.125860
    [24] JIANG Y, GAO J, ZHANG Q, LIU Z, FU M, WU J, HU Y, YE D. Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template[J]. Chem Eng J,2019,371:78−87. doi: 10.1016/j.cej.2019.03.233
    [25] CHOWDHURY M B, SUI R, LUCKY R A, CHARPENTIER P A. One-pot procedure to synthesize high surface area alumina nanofibers using supercritical carbon dioxide[J]. Langmuir,2010,26(4):2707−2713. doi: 10.1021/la902738y
    [26] WANG Y, XUE Y, ZHAO C, ZHAO D, LIU F, WANG K, DIONYSIOU D D. Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies[J]. Chem Eng J,2016,300:300−305. doi: 10.1016/j.cej.2016.04.007
    [27] YANG P, YANG S, SHI Z, MENG Z, ZHOU R. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts[J]. Appl Catal B: Environ,2015,162:227−235. doi: 10.1016/j.apcatb.2014.06.048
    [28] YAN Y, WANG L, ZHANG H. Catalytic combustion of volatile organic compounds over Co/ZSM-5 coated on stainless steel fibers[J]. Chem Eng J,2014,255:195−204. doi: 10.1016/j.cej.2014.05.141
    [29] LI J, ZUO S, YANG P, QI C. Study of CeO2 modified AlNi mixed pillared clays supported palladium catalysts for benzene adsorption/desorption catalytic combustion[J]. Materials,2017,10(8):949.
    [30] WANG W, ZHU Q, DAI Q, WANG X. Fe doped CeO2 nanosheets for catalytic oxidation of 1,2-dichloroethane: Effect of preparation method[J]. Chem Eng J,2017,307:1037−1046. doi: 10.1016/j.cej.2016.08.137
    [31] TANG X, XU Y, SHEN W. Promoting effect of copper on the catalytic activity of MnOx-CeO2 mixed oxide for complete oxidation of benzene[J]. Chem Eng J,2008,144(2):175−180. doi: 10.1016/j.cej.2008.01.016
    [32] 张新华. Ce和Mn金属氧化物低温催化燃烧DCM及其性能调控[D]. 杭州: 浙江工业大学, 2019.

    Zhang Xin-hua. Low-temperature catalytic combustion DCM on Ce and Mn oxides and performances tuning[D]. Hangzhou: Zhejiang University of Technology, 2019.
    [33] HU F, CHEN J, PENG Y, SONG H, LI K, LI J. Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion[J]. Chem Eng J,2018,331:425−434. doi: 10.1016/j.cej.2017.08.110
    [34] LI P, HE C, CHENG J, MA C, DOU B, HAO Z. Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: Effects of preparation methods[J]. Appl Catal B: Environ,2011,101(3/4):570−579. doi: 10.1016/j.apcatb.2010.10.030
    [35] CHEN X, CHEN X, YU E, CAI S, JIA H, CHEN J, LIANG P. In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion[J]. Chem Eng J,2018,344:469−479. doi: 10.1016/j.cej.2018.03.091
    [36] HAN W, ZHAO H, DONG F, TANG Z. Morphology-controlled synthesis of 3D, mesoporous, rosette-like CeCoOx catalysts by pyrolysis of Ce[Co(CN)6] and application for the catalytic combustion of toluene[J]. Nanoscale,2018,10(45):21307−21319. doi: 10.1039/C8NR07882C
    [37] FENG X, GUO J, WEN X, XU M, CHU Y, YUAN S. Enhancing performance of Co/CeO2 catalyst by Sr doping for catalytic combustion of toluene[J]. Appl Surface Sci,2018,445:145−153. doi: 10.1016/j.apsusc.2018.03.070
    [38] CHANG S, LI M, HUA Q, ZHANG L, MA Y, YE B, HUANG W. Shape-dependent interplay between oxygen vacancies and Ag-CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity[J]. J Catal,2012,293:195−204. doi: 10.1016/j.jcat.2012.06.025
    [39] SAKTHIVEL T S, REID D L, BHATTA U M, MÖBUS G, SAYLE D C, SEAL S. Engineering of nanoscale defect patterns in CeO2 nanorods via ex situ and in situ annealing[J]. Nanoscale,2015,7(12):5169−5177. doi: 10.1039/C4NR07308H
    [40] LIU X, ZHOU K, WANG L, WANG B, LI Y. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. J Am Chem Soc,2009,131(9):3140−3141. doi: 10.1021/ja808433d
    [41] LUO Y, LIN D, ZHENG Y, FENG X, CHEN Q, ZHANG K, WANG X, JIANG L. MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: Efficient catalyst and good water tolerance for low-temperature toluene oxidation[J]. Appl Surf Sci,2020,504:144481. doi: 10.1016/j.apsusc.2019.144481
    [42] HE H, LIN X, LI S, WU Z, GAO J, WU J, WEN W, YE D, FU M. The key surface species and oxygen vacancies in MnOx(0.4)-CeO2 toward repeated soot oxidation[J]. Appl Catal B: Environ,2018,223:134−142. doi: 10.1016/j.apcatb.2017.08.084
    [43] LIOTTA L F, OUSMANE M, DI CARLO G, PANTALEO G, DEGANELLO G, BOREAVE A, GIROIR-FENDLER A. Catalytic removal of toluene over Co3O4-CeO2 mixed oxide catalysts: comparison with Pt/Al2O3[J]. Catal Lett,2008,127(3/4):270−276.
    [44] LIAO Y, FU M, CHEN L, WU J, HUANG B, YE D. Catalytic oxidation of toluene over nanorod-structured Mn-Ce mixed oxides[J]. Catal Today,2013,216:220−228. doi: 10.1016/j.cattod.2013.06.017
    [45] LI Y, SHEN W. Morphology-dependent nanocatalysis on metal oxides[J]. Sci China Chem,2012,55(12):2485−2496. doi: 10.1007/s11426-012-4565-2
    [46] GAO Y, WANG W, CHANG S, HUANG W. Morphology effect of CeO2 support in the preparation, metal-support interaction, and catalytic performance of Pt/CeO2 catalysts[J]. ChemCatChem,2013,5(12):3610−3620. doi: 10.1002/cctc.201300709
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  74
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-28
  • 修回日期:  2020-11-16
  • 刊出日期:  2021-02-08

目录

    /

    返回文章
    返回