留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱改性ZSM-5分子筛及其甲醇芳构化性能

李君华 谢锦印 张丹 刘琳 邢锦娟

李君华, 谢锦印, 张丹, 刘琳, 邢锦娟. 碱改性ZSM-5分子筛及其甲醇芳构化性能[J]. 燃料化学学报(中英文), 2021, 49(3): 338-345. doi: 10.1016/S1872-5813(21)60016-6
引用本文: 李君华, 谢锦印, 张丹, 刘琳, 邢锦娟. 碱改性ZSM-5分子筛及其甲醇芳构化性能[J]. 燃料化学学报(中英文), 2021, 49(3): 338-345. doi: 10.1016/S1872-5813(21)60016-6
LI Jun-hua, XIE Jin-yin, ZHANG Dan, LIU Lin, XING Jin-juan. Effect of alkali modification to ZSM-5 zeolite on the aromatization of methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 338-345. doi: 10.1016/S1872-5813(21)60016-6
Citation: LI Jun-hua, XIE Jin-yin, ZHANG Dan, LIU Lin, XING Jin-juan. Effect of alkali modification to ZSM-5 zeolite on the aromatization of methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 338-345. doi: 10.1016/S1872-5813(21)60016-6

碱改性ZSM-5分子筛及其甲醇芳构化性能

doi: 10.1016/S1872-5813(21)60016-6
基金项目: 国家自然科学基金(21606117)和辽宁省创新团队项目(2018-479-14, LT2015001)资助
详细信息
    通讯作者:

    Tel:13940698270,E-mail:bestzhangdan@163.com

  • 中图分类号: O643;TQ246

Effect of alkali modification to ZSM-5 zeolite on the aromatization of methanol

Funds: The project was supported by the National Natural Science Foundation of China (21606117) and Innovation Team Project of Liaoning Province (2018-479-14, LT2015001)
  • 摘要: 利用乙酸钠和柠檬酸钠对ZSM-5分子筛进行脱硅改性处理,并通过XRD、SEM、NH3-TPD、27Al MAS NMR、吡啶吸附红外光谱和N2吸附-脱附等表征手段对ZSM-5分子筛结构、酸量、比表面积及孔体积等物化性质进行表征分析。结果表明,碱改性使分子筛的孔径增加且形成合适的微-介孔结构,同时,使L酸量和B酸量明显降低。当乙酸钠溶液浓度为0.5 mol/L时,改性的分子筛在形成大量介孔结构的同时具有合适的B/L值,使催化剂的寿命延长并展现出最优的催化性能。与微孔ZSM-5相比,使用寿命由20 h延长到74 h,芳烃最高产率从20.97%提高到40.05%。
  • 图  1  碱改性前后ZSM-5分子筛的XRD谱图

    Figure  1  XRD patterns of ZSM-5 zeolites before and after alkali modification

    图  2  碱改性前后ZSM-5分子筛的SEM((a)、(c)、(e))照片和TEM((b)、(d)、(f))照片

    Figure  2  SEM and TEM images of the ZSM-5 zeolite before and after alkali modification ZSM-5 ((a), (b)), SA-ZSM-5-0.5 ((c), (d)) and SC-ZSM-5-0.5 ((e), (f))

    图  3  碱改性前后ZSM-5的氮气吸附-脱附曲线(a)和孔径分布曲线(b)

    Figure  3  Nitrogen adsorption-desorption curve (a) and pore size distribution curve (b) of ZSM-5 zeolites before and after alkali modification

    图  4  碱改性前后ZSM-5分子筛的 27Al MAS NMR谱图

    Figure  4  27Al MAS NMR spectra of ZSM-5 zeolites before and after alkali modification

    图  5  碱改性前后ZSM-5分子筛的NH3-TPD谱图

    Figure  5  NH3-TPD spectra of ZSM-5 zeolites before and after alkali modification

    图  6  碱改性前后ZSM-5分子筛的Py-FTIR谱图

    Figure  6  Py-FTIR spectra of ZSM-5 zeolites before and after alkali modification (a−d): SA-ZSM-5-0.1, 0.2, 0.5, 1.0; e: SC-ZSM-5-0.5

    图  7  不同碱浓度改性ZSM-5分子筛的甲醇转化率随时间的变化

    Figure  7  Methanol conversion of ZSM-5 modified with different alkali concentration changes with time

    reaction conditions: t = 420 ℃; the flow of N2 = 20 mL/min; WHSV = 4.74 h−1; p = 0.1 MPa

    图  8  不同碱浓度改性ZSM-5分子筛的芳烃收率随时间的变化

    Figure  8  Aromatics yield of ZSM-5 modified with different alkali concentration changes with time

    reaction conditions: t = 420 ℃; the flow of N2 = 20 mL/min; WHSV = 4.74 h−1; p = 0.1 MPa

    图  9  不同碱液改性ZSM-5分子筛的甲醇转化率随时间的变化

    Figure  9  Methanol conversion of ZSM-5 modified with different alkali changes with time

    reaction conditions: t = 420 ℃; the flow of N2 = 20 mL/min; WHSV = 4.74 h−1; p = 0.1 MPa

    表  1  ZSM-5分子筛样品的相对结晶度和硅铝比

    Table  1  Relative crystallinity and n(SiO2)/n(Al2O3) of ZSM-5 zeolite samples

    SampleRelative crystallinity /%n(SiO2)/n(Al2O3)
    SC-ZSM-5-0.599.6170
    SA-ZSM-5-1.099.6665
    SA-ZSM-5-0.599.5873
    SA-ZSM-5-0.299.9978
    ZSM-510081
    下载: 导出CSV

    表  2  ZSM-5分子筛样品的结构性质

    Table  2  Structural properties of ZSM-5 zeolite samples

    CatalystSBET/
    (m2·g−1)
    Sexter/
    (m2·g−1)
    vtotal/
    (cm3·g−1)
    vmicro/
    (cm3·g−1)
    SC-ZSM-5-0.5348890.250.11
    SA-ZSM-5-1.0351860.280.08
    SA-ZSM-5-0.5359940.260.09
    SA-ZSM-5-0.2341820.220.11
    ZSM-5321540.200.12
    下载: 导出CSV

    表  3  ZSM-5分子筛样品的酸性和酸量分布

    Table  3  Acidity and acidity distribution of ZSM-5 zeolite samples

    CatalystRelative
    acid amounts
    Acid amounts/(mmol·g−1)B/L
    strong acidityweak acidityLB
    SC-ZSM-5-0.50.6280.7120.241.194.96
    SA-ZSM-5-1.00.6660.7330.301.143.80
    SA-ZSM-5-0.50.6840.7180.271.314.85
    SA-ZSM-5-0.20.7450.7730.411.974.81
    ZSM-5113.355.371.60
    note:the relative acid amount was obtained from the NH3-TPD curve; the acid amount data were obtained from a Py-FTIR spectrum at 200 ℃
    下载: 导出CSV
  • [1] CONTE M, LOPEZ-SANCHEZ J A, QIAN H, MORGAN D J, RYABENKOVA Y, BARTLEY J K, CARLEY A F, TAYLOR S H, KIELY C J, KHALID K. Modified zeolite ZSM-5 for the methanol to aromatics reaction[J]. Catal Sci Technol,2011,2(1):105−112.
    [2] WANG F, XIAO W, GAO L, XIAO G. The growth mode of ZnO on HZSM-5 substrates by atomic layer deposition and its catalytic property in the synthesis of aromatics from methanol[J]. Catal Sci Technol,2016,6(9):3074−3086.
    [3] KUI S, WEIZHONG Q, NING W, CHANG S, FEI W. Fabrication of c-axis oriented ZSM-5 hollow fibers based on an in situ solid-solid transformation mechanism[J]. Jam Chem Soc,2013,135(41):15322−15325.
    [4] 梁晓彤, 范晶晶. ZSM-5分子筛改性方法概述[J]. 科技风,2019,(34):162.

    LIANG, Xiao-tong, FAN Jing-jing. Overview of modification methods of ZSM-5 molecular sieve[J]. Technol Wind,2019,(34):162.
    [5] LI J, CHAO H, KAI T, HAO X, ZHU Z, HU Z H. CO2 atmosphere-enhanced methanol aromatization over the NiO-HZSM-5 catalyst[J]. RSC Adv,2014,4(84):44377−44385.
    [6] BAKARE I A, MURAZA O, YAMANI Z H, YOSHIOKA M, YOKOI T. Conversion of methanol to olefins over Al-rich ZSM-5 modified with alkaline earth metal oxides[J]. Catal Sci Technol,2016,6(21):7852−7859.
    [7] LI G, VASSILEV P, SANCHEZ-SANCHEZ M, LERCHER J A, HENSEN E J M, PIDKO E A. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol[J]. J Catal,2016,338:305−312.
    [8] YOUSHENG T, HIROFUMI K, KATSUMI K. ZSM-5 monolith of uniform mesoporous channels[J]. J Am Chem Soc,2003,125(20):6044−6045.
    [9] KAUR B, TUMMA M, SRIVASTAVA R. Transition-metal-exchanged nanocrystalline ZSM-5 and metal-oxide-incorporated SBA-15 catalyzed reduction of nitroaromatics[J]. Ind Eng Chem Res,2013,52(33):11479−11487.
    [10] AVELINO C, DÍAZ-CABANAS M J, JOAQUíN M T, FERNANDO R, JORDI R. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst[J]. Nature,2002,418(6897):514−517.
    [11] 杨福文, 张波. 一种ZSM-5分子筛的环保合成方法[J]. 化工管理,2020,(16):83−84. doi: 10.3969/j.issn.1008-4800.2020.16.049

    Yang Fu-wen, ZHANG Bo. An environmentally friendly synthesis method of ZSM-5 molecular sieve[J]. Chem Ind Manage,2020,(16):83−84. doi: 10.3969/j.issn.1008-4800.2020.16.049
    [12] PAILLAUD J L, HARBUZARU B, PATARIN J, BATS N. Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings[J]. Science,2004,304(5673):990−992.
    [13] BJØRGEN, MORTEN, AKYALCIN, OLSBYE, UN NI, BENARD, SANDRINE, KOLBOE, STEIN. Methanol to hydrocarbons over large cavity zeolites: Toward a unified description of catalyst deactivation and the reaction mechanism[J]. J Catal,2010,275(1):170−180.
    [14] 黄世英, 熊晓云. 多级孔分子筛的合成研究进展[J]. 工业催化,2019,27(5):16−21. doi: 10.3969/j.issn.1008-1143.2019.05.004

    HUANG Shi-ying, XIONG Xiao-yun. Advances in synthesis of multistage pore molecular sieves[J]. Ind Catal,2019,27(5):16−21. doi: 10.3969/j.issn.1008-1143.2019.05.004
    [15] 李晶, 王迪. 介孔MCM-41的合成及改性研究进展[J]. 四川化工,2019,22(2):12−15. doi: 10.3969/j.issn.1672-4887.2019.02.005

    LI Jing, WANG Di. Progress in synthesis and modification of mesoporous MCM-41[J]. Sichuan Chem Ind,2019,22(2):12−15. doi: 10.3969/j.issn.1672-4887.2019.02.005
    [16] LIU B, CHAO L, REN Y, TAN Y, XI H, YU Q. Direct synthesis of mesoporous ZSM-5 zeolite by a dual-functional surfactant approach[J]. Chem Eng J,2012,210(6):96−102.
    [17] LI J, MIAO P, LI Z, HE T, HAN D, WU J, WANG Z, WU J, LI J, MIAO P. Hydrothermal synthesis of nanocrystalline H[Fe, Al]ZSM-5 zeolites for conversion of methanol to gasoline[J]. Energ Convers Manage,2015,93:259−266.
    [18] EGEBLAD K, CHRISTENSEN C H, KUSTOVA M, CHRISTENSEN C H. Templating mesoporous zeolites[J]. Chem Mater,2008,20(3):946−960.
    [19] JAVIER P R, CHRISTENSEN C H, KRESTEN E, CHRISTENSEN C H, GROEN J C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chem Soc Rev,2008,37(11):2530−2542.
    [20] BOISEN A, SCHMIDT I, CARLSSON A, DAHL S, BRORSON M, JACOBSEN C J. TEM stereo-imaging of mesoporous zeolite single crystals[J]. Chem Commun,2003,9(8):958−959.
    [21] WEI F, SNYDER M A, SANDEEP K, PYUNG-SOO L, WON CHEOL Y, MCCORMICK A V, PENN R, L EE, ANDREAS S, MICHAEL T. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity[J]. Nat Mater,2008,7(12):984−991.
    [22] ZHU H, LIU Z, WANG Y, KONG D, XIE Z. Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite1 crystal[J]. Chem Mater,2008,20(3):1134−1139.
    [23] YAO J, YI H, WANG H. Controlling zeolite structures and morphologies using polymer networks[J]. J Mater Chem,2010,20(44):9827−9831.
    [24] SERRANO D P, ESCOLA J M, PIZARRO P. Synthesis strategies in the search for hierarchical zeolites[J]. Chem Soc Rev,2013,42(9):4004−4035.
    [25] LYNCH J, RAATZ F, DUFRESNE P. Characterization of the textural properties of dealuminated HY forms[J]. Zeolites,1987,7(4):333−340.
    [26] GROEN J C and MOULIJN J A. Desilication: On the controlled generation of mesoporosity in MFI zeolites[J]. J Mater Chem,2006,16(22):2121−2131.
    [27] VERBOEKEND D, MITCHELL S, MILINA M, GROEN J C, PEREZ-RAMIREZ J. Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication[J]. J Phys Chem C,2011,115(29):14193−14203.
    [28] 赵玉琦, 张弦, 刘晓飞, 郭雅新, 董若楠和常四良. 碱改性法制备微孔-介孔ZSM-5分子筛的研究进展[J]. 中国石油和化工标准与质量,2017,37(15):104−106. doi: 10.3969/j.issn.1673-4076.2017.15.053

    ZHAO Yu-qi, ZHANG Xuan, LIU Xiao-fei, GUO Ya-xin, DONG Ruo-nan, CHANG Si-liang. Preparation of microporous mesoporous ZSM-5 zeolite by alkali modification[J]. China Pet Chem Ind Standard Qual,2017,37(15):104−106. doi: 10.3969/j.issn.1673-4076.2017.15.053
    [29] SU L, LIN L, ZHUANG J, WANG H, LI Y, SHEN W, XU Y, BAO X. Creating mesopores in ZSM-5 zeolite by alkali treatment: A new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts[J]. Catal Lett,2003,91(3/4):155−167.
    [30] 魏民, 孔飞飞, 丁越野和刘冬梅. 碱处理法制备微介孔ZSM-5及其加氢脱硫性能的研究[J]. 石油炼制与化工,2015,46(10):61−66. doi: 10.3969/j.issn.1005-2399.2015.10.012

    Wei Min, KONG Fei-fei, DING Yue-ye, LIU Dong-mei. Preparation of micromesoporous ZSM-5 by alkali treatment and its hydrodesulfurization performance[J]. Pet Ref Chem Ind,2015,46(10):61−66. doi: 10.3969/j.issn.1005-2399.2015.10.012
    [31] 马健, 刘冬梅, 魏民, 王海彦, 王坤, 张晶卫. Na2CO3溶液处理对Ni-Mo/HZSM-5分子筛硫醚化催化性能的影响[J]. 燃料化学学报,2014,42(9):1128−1134. doi: 10.3969/j.issn.0253-2409.2014.09.014

    MA Jian, LIU Dong-mei, WEI Min, WANG Hai-yan, WANG Kun, ZHANG Jing-wei. Effect of Na2CO3 solution treatment on the catalytic performance of thioetherification of Ni-MO /HZSM-5 zeolite[J]. J Fuel Chem Technol,2014,42(9):1128−1134. doi: 10.3969/j.issn.0253-2409.2014.09.014
    [32] 赵岑, 刘冬梅, 魏民, 孙志岩, 王海彦. 多级孔ZSM-5分子筛的制备及催化噻吩烷基化性能研究[J]. 燃料化学学报,2013,41(10):1256−1261.

    ZHAO Cen, LIU Dong-mei, WEI Min, SUN Zhi-yan, WANG Hai-yan. Preparation and catalytic alkylation of thiophene using multistage pore ZSM-5 zeolite[J]. J Fuel Chem Tehnol,2013,41(10):1256−1261.
    [33] GROEN J C, MOULIJN J A, PÉREZ-RAMíREZ J. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination[J]. Microporous Mesoporous Mater,2005,87(2):153−161.
    [34] GROEN J C, PEFFER L A A, MOULIJN J A, PÉREZ-RAMíREZ J. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium[J]. Colloids Surfaces A,2004,241(1):53−58.
    [35] FREUDE D, HAASE J (1993). Quadrupole effects in solid-state nuclear magnetic resonance[J]. Springer Berlin,1993,:74−79.
    [36] BRUNNER E, ERNST H, FREUDE D, FRöHLICH T, HUNGER M, PFEIFER H. Magic-angle-spinning NMR studies of acid sites in zeolite H-ZSM-5[J]. J Catal,1991,22(1):34−41.
    [37] SONG Y Q, FENG Y L, LIU F, KANG C L, ZHOU X L, XU L Y, YU G X. Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance[J]. J Mol Catal A: Chem,2009,310(1):130−137.
    [38] LIU B, CHAI Y, LI Y, WANG A, LIU Y, LIU C. Effect of sulfidation atmosphere on the performance of the CoMo/γ-Al2O3 catalysts in hydrodesulfurization of FCC gasoline[J]. App Catal A: Gen,2014,471(10):70−79.
    [39] 孙巾茹, 王颖, 马强, 李滨, 赵玉, 田雨, 王虹, 迟姚玲, 李翠清, 宋永吉. Ag(x)/ZSM-5催化剂的CH4-SCR脱硝性能[J]. 燃料化学学报,2020,48(2):197−204. doi: 10.3969/j.issn.0253-2409.2020.02.009

    SUN Jin-ru, WANG Ying, MA Qiang, LI Bin, ZHAO Yu, TIAN Yu, WANG Hong, CHI Yao-ling, LI Cui-qing, SONG Yong-ji. Denitrification performance of Ag(X)/ZSM-5 catalyst with CH4-SCR[J]. J Fuel Chem Technol,2020,48(2):197−204. doi: 10.3969/j.issn.0253-2409.2020.02.009
    [40] FELICZAK-GUZIKA. Hierarchical zeolites: Synthesis and catalytic properties[J]. Microporous Mesoporous Mater,2009,259(15):126−130.
    [41] HOLM M S, TAARNING E, EGEBLAD K, CHRISTENSEN C H. Catalysis with hierarchical zeolites[J]. Catal Today,2011,168(1):3−16.
    [42] 高玥, 黄星亮, 字琴, 彭文宇, 张鑫, 田洪锋, 董乐, 刘宗俨. NaOH改性ZSM-5分子筛在苯、甲醇烷基化反应中的应用[J]. 燃料化学学报,2019,47(9):1104−1110. doi: 10.3969/j.issn.0253-2409.2019.09.010

    GAO Yue, HUANG Xing-liang, ZI Qin, PENG Wen-yu, ZHANG Xin, TIAN Hong-feng, Dong Le, Liu Zong-yan. Application of NaOH modified ZSM-5 molecular sieve in benzene and methanol alkylation[J]. J Fuel Chem Technol,2019,47(9):1104−1110. doi: 10.3969/j.issn.0253-2409.2019.09.010
    [43] 孙逊. 多级孔ZSM-5分子筛用于催化甲醇芳构化反应性能研究[D]. 上海: 上海师范大学, 2018.

    SUN Xun. Multistage pore ZSM-5 molecular sieve for catalytic aromatization of methanol[D]. Shanghai: Shaihai: Normal University, 2018.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  87
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2020-11-23
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回