留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

草酸/聚乙二醇低温共熔体催化α-蒎烯水合反应

袁冰 张东强 解从霞 于凤丽 于世涛

袁冰, 张东强, 解从霞, 于凤丽, 于世涛. 草酸/聚乙二醇低温共熔体催化α-蒎烯水合反应[J]. 燃料化学学报(中英文), 2021, 49(3): 329-337. doi: 10.1016/S1872-5813(21)60017-8
引用本文: 袁冰, 张东强, 解从霞, 于凤丽, 于世涛. 草酸/聚乙二醇低温共熔体催化α-蒎烯水合反应[J]. 燃料化学学报(中英文), 2021, 49(3): 329-337. doi: 10.1016/S1872-5813(21)60017-8
YUAN Bing, ZHANG Dong-qiang, XIE Cong-xia, YU Feng-li, YU Shi-tao. Hydration of α-pinene catalyzed by oxalic acid/polyethylene glycol deep eutectic solvents[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 329-337. doi: 10.1016/S1872-5813(21)60017-8
Citation: YUAN Bing, ZHANG Dong-qiang, XIE Cong-xia, YU Feng-li, YU Shi-tao. Hydration of α-pinene catalyzed by oxalic acid/polyethylene glycol deep eutectic solvents[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 329-337. doi: 10.1016/S1872-5813(21)60017-8

草酸/聚乙二醇低温共熔体催化α-蒎烯水合反应

doi: 10.1016/S1872-5813(21)60017-8
基金项目: 国家自然科学基金(31870554,31470595),山东省重点研发计划(公益类专项)(2017GGX40105)和山东省泰山学者项目(ts201511033)资助
详细信息
    通讯作者:

    Tel:13255573327,E-mail:yuanbing@qust.edu.cn

    xiecongxia@126.com

  • 中图分类号: O643.32

Hydration of α-pinene catalyzed by oxalic acid/polyethylene glycol deep eutectic solvents

Funds: The project was supported by the National Natural Science Foundation of China (31870554, 31470595), the Shandong Key R & D Plan (Public Welfare Special Project) (2017GGX40105) and the Taishan Scholars Projects of Shandong (ts201511033)
  • 摘要: 以天然有机二元羧酸草酸(OA)作为氢键供体,各种聚合度的聚乙二醇(PEG)作为氢键受体,构建出羧酸功能化低温共熔体(DES),将其用于催化α-蒎烯水合制备α-松油醇的反应中。傅里叶变换红外光谱(FT-IR)、核磁共振氢谱(1H NMR)、热重分析(TGA)等表征证实了OA与PEG之间氢键的形成。DES中PEG组分的存在对其酸强度影响较小,但随PEG分子量和用量的增加,DES总酸量减小,从而降低其催化活性。研究表明,分子量最小的PEG200与OA制备的OA/0.6PEG200 DES具有较佳的催化 α-蒎烯水合反应性能,在DES催化剂用量0.03 mol(以OA计),α-蒎烯用量0.06 mol,水用量0.3 mol,反应温度75 ℃,反应时间8 h的优化条件下,获得81.5%的α-蒎烯转化率及51.2%的α-松油醇选择性。催化剂相反应结束后静置冷藏过夜即可分层分离,且循环使用性能良好。该OA/0.6PEG200 低温共熔体制备简单,原子经济性高,为一步法催化α-松油醇的清洁制备开辟了新路线。
  • 图  1  OA、PEG200及OA/0.6PEG200 DES的FT-IR谱图

    Figure  1  FT-IR spectra of OA, PEG200 and OA/0.6PEG200 DES

    图  2  OA、PEG200及OA/0.6PEG200 DES的 1H NMR谱图

    Figure  2  1H NMR spectra of OA, PEG200 and OA/0.6PEG200 DES

    图  3  OA、PEG200及OA/0.6PEG200 DES的TG曲线

    Figure  3  TG curves of OA, PEG200 and OA/0.6PEG200 DES

    图  4  DES催化剂的UV-vis谱图

    Figure  4  UV-vis curves of DES catalysts

    图  5  OA与PEG200比例对催化性能的影响

    Figure  5  Effect of ratios of OA to PEG200 on catalytic performance

    reaction conditions: 0. 06 mol of α-pinene, 0.3 mol of water, 0.03 mol (based on OA) of OA/xPEG200, 75 ℃, 8 h)

    图  6  不同比例DES在75 ℃时的黏度变化

    Figure  6  Viscosity change of DES with different ratios at 75 ℃

    图  7  OA/0.6PEG200黏度随温度的变化

    Figure  7  Viscosity change of OA/0.6PEG200 with temperature

    图  8  反应温度对催化性能的影响

    Figure  8  Effect of reaction temperature on catalytic performance

    reaction conditions: 0.06 mol α-pinene, 0. 3 mol water, 0.03 mol (based on OA) OA/0.6PEG200, 8 h

    图  9  催化剂用量对催化性能的影响

    Figure  9  Effect of catalyst dosage on catalytic performance

    reaction conditions: 0.06 mol of α-pinene, 0.3 mol of water, OA:PEG200 = 1:0.6, 75 ℃, 8 h

    图  10  水量对催化性能的影响

    Figure  10  Effect of water dosage on catalytic performance

    reaction conditions: 0.06 mol α-pinene, 0.03 mol (based on OA) OA/xPEG200, 75 ℃, 8 h

    图  11  OA/0.6PEG200与不同量水混合物的FT-IR谱图

    Figure  11  FT-IR spectra of the mixture of OA/0.6PEG200 with different dosages of water

    图  12  OA/0.6PEG200与不同量水混合物的 1H NMR谱图

    Figure  12  1H NMR spectra of the mixture of OA/0.6PEG200 with different dosages of water

    图  13  反应时间对催化性能的影响

    Figure  13  Effect of reaction time on catalytic performance

    reaction conditions: 0.06 mol of α-pinene, 0.03 mol (based on OA) of OA/xPEG200, 75 ℃

    图  14  OA/0.6PEG200的循环使用性能

    Figure  14  Recycling performance of OA/0.6PEG200

    图  15  OA/0.6PEG200的循环使用性能(补充草酸)

    Figure  15  Recycling performance of OA/0.6PEG200 (with added OA)

    表  1  聚乙二醇聚合度对DES催化性能的影响

    Table  1  The effect of the degree of polymerization of polyethylene glycol on the catalysis of DES

    HBDHBAConversion of
    α-pinene/ %
    Selectivity of
    α-terpineol/%
    Distribution of reaction products/ %
    isomerization productsef
    abcd
    OA51.526.74.511.624.226.530.42.8
    OAPEG20091.745.04.616.418.86.451.02.8
    OAPEG40058.650.87.515.115.85.452.33.9
    OAPEG60061.449.17.416.116.24.151.15.1
    OAPEG200053.050.07.815.116.14.253.23.6
    reaction conditions: 0.06 mol of α-pinene, 0.3 mol of water, 0.03 mol (based on OA) of catalyst, 80 ℃, 8 h; products: a (camphene),
    b (limonene), c (terpinolene), d (other terpenes), e (total hydration products), f (other by-products)
    下载: 导出CSV

    表  2  DES催化剂的酸量

    Table  2  Acidity of DES catalyst

    CatalystAcidity/ (mmol H+·g−1)
    OA24.07
    OA/ 0.6PEG2006.62
    OA/ 0.6PEG4004.49
    OA/ 0.6PEG6003.71
    OA/ 0.6PEG20001.09
    OA/ 0.8PEG2005.22
    OA/ 1.0PEG2004.32
    OA/ 1.2PEG2003.67
    OA/ 2.0PEG2001.83
    下载: 导出CSV

    表  3  DES催化剂的密度

    Table  3  Density of DES catalysts

    DES ρ/(g·cm−3)
    OA/ 0.6PEG200 1.303
    OA/ 0.8PEG200 1.256
    OA/ 1.0PEG200 1.213
    OA/ 1.2PEG200 1.190
    OA/ 2.0PEG200 1.148
    下载: 导出CSV

    表  4  柠檬烯、异松油烯、α-松油醇的相互转化

    Table  4  Mutual conversion of limonene, terpinolene, and α-terpineol

    Reactants Components of the reaction mixture/ %
    isomers ofterpene e f g
    a b c d
    Limonene87.71.34.05.40.51.1
    Terpinolene4.076.018.00.90.40.7
    α-terpineol11.011.09.056.511.90.6
    reaction conditions: 0.06 mol of reactants, 0.3 mol of water, 0.03 mol(based on OA) of OA/0.6PEG200, 75 ℃, 8 h; products: a (camphene), b (limonene), c (terpinolene), d (other terpenes), e (α-terpineol), f (other hydration products), g (by-products)
    下载: 导出CSV
  • [1] SARATHY S M, O WALD P, HANSEN N, KOHSE-HÖINGHAUS K. Alcohol combustion chemistry[J]. Prog Energy Combust Sci,2014,44:40−102.
    [2] VALLINAYAGAM R, VEDHARAJ S, NASER N, ROBERTS W L, DIBBLE R W, SARATHY S M. Terpineol as a novel octane booster for extending the knock limit of gasoline[J]. Fuel,2017,187:9−15.
    [3] VALLINAYAGAM R, VEDHARAJ S, ROBERTS W L, SARATHY S M, VEDHARAJ S. Performance and emissions of gasoline blended with terpineol as an octane booster[J]. Renewable Energy,2017,101:1087−1093.
    [4] 赵振东, 刘先章. 松节油的精细化学利用(Ⅱ)—松节油合成日化香料(上)[J]. 生物质化学工程,2001,(2):41−46. doi: 10.3969/j.issn.1673-5854.2001.02.011

    ZHAO Zhen-dong, LIU Xian-zhang. Fine chemical utilization of turpentine oil (Ⅱ) —synthesis of perfume from turpentine oil (Part I)[J]. Bio Chem Eng,2001,(2):41−46. doi: 10.3969/j.issn.1673-5854.2001.02.011
    [5] 赵振东, 刘先章. 松节油的精细化学利用(Ⅶ)—松节油合成功能材料[J]. 生物质化学工程,2002,(1):36−41. doi: 10.3969/j.issn.1673-5854.2002.01.011

    ZHAO Zhen-dong, LIU Xian-zhang. Fine chemical utilization of turpentine oil (Ⅶ) —Synthesis of functional materials from turpentine oil[J]. Bio Chem Eng,2002,(1):36−41. doi: 10.3969/j.issn.1673-5854.2002.01.011
    [6] 王宗德, 宋湛谦. 松节油合成香料的研究现状(一)[J]. 精细与专用化学品,2003,(12):1−3.

    WANG Zong-de, SONG Zhan-qian. Research status of turpentine synthetic perfume (1)[J]. Fine Spec Chem,2003,(12):1−3.
    [7] 古研, 赵振东, 毕良武, 李冬梅, 王婧. 马尾松松节油标准样品的定值研究[J]. 生物质化学工程,2011,(1):30−33.

    GU Yan, ZHAO Zhen-dong, BI Liang-wu, LI Dong-mei, WANG Jing. Determination of masson pine turpentine standard sample[J]. Bio Chem Eng,2011,(1):30−33.
    [8] 于世涛, 刘福胜, 解从霞, 李露. $ {\rm{SO}}_4^{2 - } $/SiO2-ZrO2复合固体超强酸催化 α-蒎烯水合反应[J]. 精细化工,2004,21(3):178−180. doi: 10.3321/j.issn:1003-5214.2004.03.006

    YU Shi-tao, LIU Fu-sheng, XIE Cong-xia, LI Lu. $ {\rm{SO}}_4^{2 - } $/SiO2 -ZrO2 composite solid super acid catalyzed the hydration reaction of α-pinene[J]. Fine Chem,2004,21(3):178−180. doi: 10.3321/j.issn:1003-5214.2004.03.006
    [9] VALENTE H, VITAL J. Hydration of α-pinene and camphene over USY zeolites[J]. Stud Surf Sci Catal,1997,108:555−562.
    [10] 杨高东, 刘勇, 邵玉银, 周政, 张志炳. 松节油直接水合反应研究[J]. 化学工程,2010,38(12):48−52. doi: 10.3969/j.issn.1005-9954.2010.12.012

    YANG Gao-dong, LIU Yong, SHAO Yu-yin, ZHOU Zheng, ZHANG Zhi-bing. Study on the direct hydration reaction of turpentine[J]. Chem Eng,2010,38(12):48−52. doi: 10.3969/j.issn.1005-9954.2010.12.012
    [11] ÁVILA M C, COMELLI N A, RODRÍGUEZ-CASTELLÓN E, JIMÉNEZ-LÓPEZ A, CARRIZO F R, PONZI E N, PONZI M I. Study of solid acid catalysis for the hydration of α-pinene[J]. J Mol Catal A: Chem,2010,322(1 / 2):106−112.
    [12] COMELLI N A, AVILA M C, VOLZONE C, PONZI M I. Hydration of alpha-pinene catalyzed by acid clays[J]. Cent Eur J Chem,2013,11(5):689−697.
    [13] 季开慧, 刘仕伟, 于世涛, 刘福胜, 解从霞. 磺烷基咪唑磷酸盐-氯乙酸复合催化体系在 α-蒎烯水合反应中的应用[J]. 林产化学与工业,2007,27(6):77−80. doi: 10.3321/j.issn:0253-2417.2007.06.016

    JI Kai-hui, LIU Shi-wei, YU Shi-tao, LIU Fu-sheng, XIE Cong-xia. Application of sulfoalkylimidazole phosphate-chloroacetic acid composite catalyst system in α-pinene hydration reaction[J]. Chem Ind For Prod,2007,27(6):77−80. doi: 10.3321/j.issn:0253-2417.2007.06.016
    [14] 刘仕伟, 李露, 于世涛, 刘福胜, 宋湛谦. 温控特性的酸功能化离子液体合成及其在 α-蒎烯水合反应中的应用[J]. 催化学报,2011,32(3):96−99.

    LIU Shi-wei, LI Lu, YU Shi-tao, LIU Fu-sheng, SONG Zhan-qian. Synthesis of acid-functionalized ionic liquid with temperature control characteristics and its application in α-pinene hydration reaction[J]. Chin J Catal,2011,32(3):96−99.
    [15] YUAN B, ZHONG H, LIU P, LIU X, XIE C, YU F, YU S, ZHANG J. Heteropolyacid bisalt of N-octyl ethoxylated octadecylamine: an efficient and reusable catalyst for carboxylic acid-free hydration of α-pinene[J]. Catal Lett,2016,146(5):929−936.
    [16] ABBOTT A P, CAPPER G, DAVIES D L, RASHEED R K, TAMBYRAJAH V. Novel solvent properties of choline chloride / urea mixtures[J]. Chem Commun (Camb),2003,(1):70−71.
    [17] ABBOTT A P, BARRON J C, RYDER K S, WILSON D. Eutectic-based ionic liquids with metal-containing anions and cations[J]. Chem- Eur J,2007,13(22):6495−6501.
    [18] DAI Y, ROZEMA E, VERPOORTE R, CHOI Y H. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents[J]. J Chromatogr A,2016,1434:50−56.
    [19] XIE X, ZOU X, LU X, CHENG H, XU Q, ZHOU Z, CHANG Y. Electrodeposition of Zn and Cu-Zn alloy from ZnO/CuO precursors in deep eutectic solvent[J]. Appl Surf Sci,2016,385:481−489.
    [20] HAO L, WANG M, SHAN W, DENG C, REN W, SHI Z, L H. L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel[J]. J Hazard Mater,2017,339:216−222.
    [21] PHADTARE S B, JARAG K J, SHANKARLING G S. Greener protocol for one pot synthesis of coumarin styryl dyes[J]. Dyes Pigments,2013,97(1):105−112.
    [22] SONAWANE Y A, PHADTARE S B, BORSE B N, JAGTAP A R, SHANKARLING G S. Synthesis of Diphenylamine-based novel fluorescent styryl colorants by knoevenagel condensation using a conventional method, biocatalyst, and deep eutectic solvent[J]. Org Lett,2018,12(7):1456−1459.
    [23] CUI Y, CHANG P, YIN J, SHEN M, JIA Y, BAO M. Design, synthesis and properties of acidic deep eutectic solvents based on choline chloride[J]. J Mol Liq,2017,236:338−343.
    [24] COLMENERO F. Mechanical properties of anhydrous oxalic acid and oxalic acid dihydrate[J]. Phy Chem Chem Phy,2019,21(5):2673−2690.
    [25] JOSEPH J, JEMMIS E D. Red-, blue-, or no-shift in hydrogen bonds: a unified explanation[J]. J Am Chem Soc,2007,129(15):4620−4632.
    [26] IJARDAR S P. Deep eutectic solvents composed of tetrabutylammonium bromide and PEG: Density, speed of sound and viscosity as a function of temperature[J]. J Chem Thermodyn,2020,140:105897.
    [27] JIANG J, YAN C, ZHAO X, LUO H. A PEGylated deep eutectic solvent for controllable solvothermal synthesis of porous NiCo2S4 for efficient oxygen evolution reaction[J]. Green Chem,2017,19(13):3023−3031.
    [28] ZHAO X, LAN X, YU D, FU H, LIU Z, MU T. Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions[J]. Chem Commun,2018,54(4):13010−13013.
    [29] GABRIELE F, CHIARINI M, GERMANI R, TIECCO M. Effect of water addition on choline chloride/glycol deep eutectic solvents: characterization of their structural and physicochemical properties[J]. J Mol Liq,2019,291:111301.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  489
  • HTML全文浏览量:  224
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 修回日期:  2020-09-13
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回