留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性MnO2-Fe3O4复合氧化物催化5-羟甲基糠醛氧化合成2,5-呋喃二甲酸研究

卢虹竹 白继峰 闫飞 张新月 金颖 王景芸 陈平 周明东

卢虹竹, 白继峰, 闫飞, 张新月, 金颖, 王景芸, 陈平, 周明东. 磁性MnO2-Fe3O4复合氧化物催化5-羟甲基糠醛氧化合成2,5-呋喃二甲酸研究[J]. 燃料化学学报(中英文), 2021, 49(3): 311-320. doi: 10.1016/S1872-5813(21)60020-8
引用本文: 卢虹竹, 白继峰, 闫飞, 张新月, 金颖, 王景芸, 陈平, 周明东. 磁性MnO2-Fe3O4复合氧化物催化5-羟甲基糠醛氧化合成2,5-呋喃二甲酸研究[J]. 燃料化学学报(中英文), 2021, 49(3): 311-320. doi: 10.1016/S1872-5813(21)60020-8
LU Hong-zhu, BAI Ji-feng, YAN Fei, ZHANG Xin-yue, JIN Ying, WANG Jing-yun, CHEN Ping, ZHOU Ming-dong. Oxidation of 5-hydroxylmethylfurfural to 2, 5-furandicarboxylic acid catalyzed by magnetic MnO2-Fe3O4 composite oxides[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 311-320. doi: 10.1016/S1872-5813(21)60020-8
Citation: LU Hong-zhu, BAI Ji-feng, YAN Fei, ZHANG Xin-yue, JIN Ying, WANG Jing-yun, CHEN Ping, ZHOU Ming-dong. Oxidation of 5-hydroxylmethylfurfural to 2, 5-furandicarboxylic acid catalyzed by magnetic MnO2-Fe3O4 composite oxides[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 311-320. doi: 10.1016/S1872-5813(21)60020-8

磁性MnO2-Fe3O4复合氧化物催化5-羟甲基糠醛氧化合成2,5-呋喃二甲酸研究

doi: 10.1016/S1872-5813(21)60020-8
基金项目: 兴辽英才计划项目(XLYC1902085),辽宁省自然科学基金指导计划项目(20170540590)和中石油创新基金项目(2018D-5007-0507)资助
详细信息
    通讯作者:

    Tel: 024-56863837,E-mail:jingyun.wang@lnpu.edu.cn

    mingdong.zhou@lnpu.edu.cn

  • 中图分类号: O643.36

Oxidation of 5-hydroxylmethylfurfural to 2, 5-furandicarboxylic acid catalyzed by magnetic MnO2-Fe3O4 composite oxides

Funds: The project was supported by Liaoning Revitalization Talents Program (XLYC1902085), Natural Science Foundation of Liaoning Province (20170540590) and PetroChina Innovation Foundation (2018D-5007-0507).
  • 摘要: 以不同晶型的MnO2为催化剂进行5-羟甲基糠醛(HMF)氧化反应,并将催化活性较高的α-MnO2与Fe3O4复合制备磁性MnO2-Fe3O4复合氧化物,采用X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、NH3/CO2程序升温脱附(NH3/CO2-TPD)及吡啶吸附红外光谱(Py-FTIR)对催化剂的结构和性质进行表征和分析。结果表明,复合后的催化剂仍保持α-MnO2和Fe3O4基本结构,但催化剂中活性中心Mn4+·O2−离子对数量增加,使其对HMF氧化反应的催化活性相对α-MnO2和Fe3O4显著提升。对HMF氧化制备2,5-呋喃二甲酸(FDCA)的反应条件进行优化,复合催化剂Mn8Fe3Ox对HMF表现出良好的催化活性,在最优化条件下,HMF可完全转化,FDCA收率为76.9%。
  • 图  1  不同晶型MnO2 的XRD谱图

    Figure  1  XRD patterns of MnO2 with various crystal structures

    图  2  不同晶型MnO2 XPS谱图

    Figure  2  XPS spectra of MnO2 with various crystal structures

    (a): Mn 2p; (b): O 1s

    图  3  Mn-Fe复合金属氧化物的XRD谱图

    Figure  3  XRD patterns of Mn-Fe mixed oxide catalysts

    图  4  Fe3O4、α-MnO2和Mn8Fe3Ox的SEM照片

    Figure  4  SEM images of Fe3O4 (a), MnO2 (b) and Mn8Fe3Ox (c)

    图  5  Mn8Fe3Ox和α-MnO2 XPS谱图:(a)Mn8Fe3Ox XPS全扫描谱图,(b)Fe 2p XPS谱图,(c)Mn 2p XPS谱图,(d)O 1s XPS谱图

    Figure  5  XPS spectra of Mn8Fe3Ox and α-MnO2: (a) Wide survey XPS spectrum of Mn8Fe3Ox, high resolution XPS spectra (b) Fe2p, (c) Mn2p, and (d) O 1s of Mn8Fe3Ox and MnO2

    图  6  催化剂NH3-TPD (a)和CO2-TPD (b)曲线

    Figure  6  NH3-TPD (a) and CO2-TPD (b) profiles of various catalysts

    图  7  催化剂Py-FTIR谱图

    Figure  7  Py-FTIR spectra of various catalysts

    图  8  反应温度对HMF氧化反应的影响

    Figure  8  Influence of reaction temperature on HMF oxidation

    图  9  反应时间对HMF氧化反应的影响

    Figure  9  Influence of reaction time on HMF oxidation product yield

    图  10  催化剂Mn8Fe3Ox重复使用情况

    Figure  10  Reuse of Mn8Fe3Ox for HMF oxidation

    表  1  不同氧化物催化的HMF氧化反应

    Table  1  Perfomance of different catalysts on oxidation of HMF

    CatalystConversion/%HMFCA
    /%
    DFF
    /%
    FFCA
    /%
    FDCA
    /%
    Total yield/%
    40.54.110.27.8022.1
    α-MnO283.23.013.619.413.362.3
    γ-MnO278.22.68.625.64.541.3
    δ-MnO277.35.47.520.32.635.8
    Fe3O476.82.620.130.15.458.2
    Mn3Fe8Ox86.83.220.139.414.675.3
    Mn1Fe1Ox89.54.819.835.715.475.7
    Mn8Fe3Ox97.35.418.743.823.691.5
    下载: 导出CSV

    表  2  催化剂的酸量和减量

    Table  2  The acidity and basicity of various catalysts

    SampleAcidity/(μmol·g−1)Basicity/(μmol·g−1)
    Fe3O4416.06.1
    MnO2465.211.6
    Mn8Fe3Ox499.512.9
    下载: 导出CSV

    表  3  不同溶剂对HMF氧化反应的影响

    Table  3  Influence of different solvents on oxidation of HMF

    SolventConversion
    /%
    HMFCA
    /%
    DFF
    /%
    FFCA
    /%
    FDCA
    /%
    Total yield
    /%
    DMSO97.35.418.743.823.691.5
    MeCN81.213.526.79.87.857.8
    DMF43.50.90.85.106.8
    H2O28.6013.75.4019.1
    Ethanol20.75.36.90.9013.1
    下载: 导出CSV

    表  4  氧化剂和催化剂用量对HMF氧化反应的影响

    Table  4  Influence of the dosage of oxidant and catalyst on HMF oxidation

    Oxidant dosage
    (equiv.)
    Catalyst dosage
    /(g·mL−1)
    Conversion
    /%
    DFF
    /%
    FFCA
    /%
    FDCA
    /%
    Total yield
    /%
    3.00.00243.616.519.62.138.2
    6.50.00297.318.743.823.691.5
    9.00.00210015.935.924.477.5
    6.50.01010015.438.537.991.8
    6.50.02010010.529.554.194.1
    6.50.0301008.228.154.490.7
    6.50.0401007.328.454.690.3
    下载: 导出CSV

    表  5  正交结果分析

    Table  5  Analysis of orthogonal design

    EntryTemp./℃Time/hOxidant dosage(equiv.)Catalyst dosage/(g·mL−1)FDCA/%
    170183.00.0113.4
    270246.50.0268.8
    370309.00.0375.6
    480186.50.0340.5
    580249.00.0174.6
    680303.00.0227.0
    790189.00.0237.8
    890243.00.0310.9
    990306.50.0132.4
    k152.630.617.140.1
    k247.351.447.244.5
    k327.04562.742.3
    R25.620.845.64.4
    下载: 导出CSV

    表  6  Mn8Fe3Ox催化性能与文献报道其他催化剂比较

    Table  6  Comparison of the catalytic activity of Mn8Fe3Ox with those of other heterogeneous catalysts reported in the latest literature

    CatalystOxidantsBaseTemp./℃Time/hConversion/%FDCA/%Ref.
    Mn8Fe3OxTBHP702410076.9this work
    Au/TiO210 bar air4 equiv. NaOH13051008436
    Pd/Al2O31 bar O21.25 equiv. NaOH908> 997837
    Ru/AC40 bar air4 equiv. NaHCO310021007538
    Pt/C40 bar air2 equiv. Na2CO31006996912
    Nano-Fe3O4-CoOxTBHP801210068.421
    Co-Mn-0.251 MPa O22 equiv. NaHCO31205999522
    1 MPa O22 equiv. NaHCO390564 ± 3.64.6 ± 1.8
    MnOx-CeO22 MPa O24 equiv. KHCO31101297.979.631
    下载: 导出CSV
  • [1] WANG H, ZHU C, LI D, LIU Q, TAN J, WANG C, CAI C, MA L. Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran[J]. Renewable Sustainable Energy Rev,2019,103:227−247. doi: 10.1016/j.rser.2018.12.010
    [2] 王建刚, 张云云, 王勇, 朱丽伟, 崔洪友, 易维明. 分级有序多孔磺化碳催化果糖转化制5-羟甲基糠醛[J]. 燃料化学学报,2016,44(11):1341−1348. doi: 10.3969/j.issn.0253-2409.2016.11.010

    WANG Jian-gang, ZHANG Yun-yun, WANG Yong, ZHU Li-wei, CUI Hong-you, YI Wei-ming. Catalytic fructose dehydration to 5-hydroxymethylfurfural over sulfonated carbons with hierarchically ordered pores[J]. J Fuel Chem Technol,2016,44(11):1341−1348. doi: 10.3969/j.issn.0253-2409.2016.11.010
    [3] KONG X, ZHU Y, FANG Z, KOZINSKI J A, BUTLER I S, XU L, SONG H, WEI X. Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives[J]. Green Chem,2018,20(16):3657−3682. doi: 10.1039/C8GC00234G
    [4] KOMPANETS M O, KUSHCH O V, LITVINOV Y E, PLIEKHOV O L, NOVIKOVA K V, NOVOKHATKO A O, SHENDRIK A N, VASILYEV A V, OPEIDA I O. Oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran with molecular oxygen in the presence of N-hydroxyphthalimide[J]. Catal Commun,2014,57:60−63. doi: 10.1016/j.catcom.2014.08.005
    [5] 陆强, 廖航涛, 张阳, 张俊姣, 董长青. 果糖低温快速热解制备5-羟甲基糠醛的机理研究[J]. 燃料化学学报,2013,41(9):1070−1076. doi: 10.3969/j.issn.0253-2409.2013.09.007

    LU Qiang, LIAO Hang-tao, ZHANG Yang, ZHANG Jun-jiao, DONG Chang-qing. Reaction mechanism of low-temperature fast pyrolysis of fructose to produce 5-hydroxymethyl furfural[J]. J Fuel Chem Technol,2013,41(9):1070−1076. doi: 10.3969/j.issn.0253-2409.2013.09.007
    [6] ZHANG Z, DENG K. Recent advances in the catalytic synthesis of 2, 5-furandicarboxylic acid and its derivatives[J]. ACS Catal,2015,5(11):6529−6544. doi: 10.1021/acscatal.5b01491
    [7] GAO L, DENG K, ZHENG J, LIU B, ZHANG Z. Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid catalyzed by Merrifield resin supported cobalt porphyrin[J]. Chem Eng J,2015,270:444−449. doi: 10.1016/j.cej.2015.02.068
    [8] ZUO X, VENKITASUBRAMANIAN P, BUSCH D H, SUBRAMANIAM B. Optimization of Co/Mn/Br-catalyzed oxidation of 5-hydroxymethylfurfural to enhance 2, 5-furandicarboxylic acid yield and minimize substrate burning[J]. ACS Sustainable Chem Eng,2016,4(7):3659−3668. doi: 10.1021/acssuschemeng.6b00174
    [9] ZUO X, CHAUDHARI A S, SNAVELY K, NIU F, ZHU H, MARTIN K J, SUBRAMANIAM B. Kinetics of homogeneous 5-hydroxymethylfurfural oxidation to 2, 5-furandicarboxylic acid with Co/Mn/Br catalyst[J]. AIChE J,2017,63(1):162−171. doi: 10.1002/aic.15497
    [10] 赖金花, 周硕林, 刘凯, 刘贤响, 尹笃林. 5-羟甲基糠醛选择氧化制2, 5-呋喃二甲酸的研究进展[J]. 精细石油化工,2019,36(2):65−72. doi: 10.3969/j.issn.1003-9384.2019.02.015

    LAI Jin-hua, ZHOU Shou-lin, LIN Kai, LIU Xian-xiang, YIN Du-lin. Advances on selective oxidation of 5-hydroxymethylfurfura into 2, 5-furandicarboxylic acid[J]. Spec Petrochem,2019,36(2):65−72. doi: 10.3969/j.issn.1003-9384.2019.02.015
    [11] DAVIS S E, HOUK L R, TAMARGO E C, DATYE A K, DAVIS R J. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts[J]. Catal Today,2011,160(1):55−60. doi: 10.1016/j.cattod.2010.06.004
    [12] AIT RASS H, ESSAYEM N, BESSON M. Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion[J]. Green Chem,2013,15(8):2240−2251. doi: 10.1039/c3gc40727f
    [13] MEI N, LIU B, ZHENG J, LV K, TANG D, ZHANG Z. A novel magnetic palladium catalyst for the mild aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid in water[J]. Catal Sci Technol,2015,5(6):3194−3202. doi: 10.1039/C4CY01407C
    [14] TONG X, YU L, CHEN H, ZHUANG X, LIAO S, CUI H. Highly efficient and selective oxidation of 5-hydroxymethylfurfural by molecular oxygen in the presence of Cu-MnO2 catalyst[J]. Catal Commun,2017,90:91−94. doi: 10.1016/j.catcom.2016.11.024
    [15] HAYASHI E, KOMANOYA T, KAMATA K, HARA M. Heterogeneously-catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid with MnO2[J]. ChemSusChem,2017,10(4):654−658. doi: 10.1002/cssc.201601443
    [16] HAYASHI E, YAMAGUCHI Y, KAMATA K, TSUNODA N, KUMAGAI Y, OBA F, HARA M. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid[J]. J Am Chem Soc,2019,141(2):890−900. doi: 10.1021/jacs.8b09917
    [17] MA Y, ZHANG T, CHEN L, CHENG H, QI Z. Self-developed fabrication of manganese oxides microtubes with efficient catalytic performance for the selective oxidation of 5-hydroxymethylfurfural[J]. Ind Eng Chem Res,2019,58(29):13122−13132. doi: 10.1021/acs.iecr.9b02650
    [18] LIU H, CAO X, WEI J, JIA W, LI M, TANG X, ZENG X, SUN Y, LEI T, LIU S, LIN L. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over Fe2O3-promoted MnO2 catalyst[J]. ACS Sustainable Chem Eng,2019,7(8):7812−7822. doi: 10.1021/acssuschemeng.9b00010
    [19] YANG Z Z, DENG J, PAN T, GUO Q X, FU Y. A one-pot approach for conversion of fructose to 2, 5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2[J]. Green Chem,2012,14(11):2986−2989. doi: 10.1039/c2gc35947b
    [20] WANG S, LIU B, YUAN Z, ZHANG Z. Aerobic oxidation of 5-hydroxymethylfurfural into furan compounds over Mo-hydroxyapatite-encapsulated magnetic γ-Fe2O3[J]. J Taiwan Inst Chem Eng,2016,58:92−96. doi: 10.1016/j.jtice.2015.06.002
    [21] WANG S, ZHANG Z, LIU B. Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid over a recyclable Fe3O4-CoOx magnetite nanocatalyst[J]. ACS Sustainable Chem Eng,2015,3(3):406−412. doi: 10.1021/sc500702q
    [22] RAO K T V, ROGERS J L, SOUZANCHI S, DESSBESELL L, RAY M B, XU C C. Inexpensive but highly efficient Co-Mn mixed-oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid[J]. ChemSusChem,2018,11(18):3323−3334. doi: 10.1002/cssc.201800989
    [23] LI S, SU K, LI Z, CHENG B. Selective oxidation of 5-hydroxymethylfurfural with H2O2 catalyzed by a molybdenum complex[J]. Green Chem,2016,18(7):2122−2128. doi: 10.1039/C5GC01991E
    [24] ZHANG Z, LIU B, LV K, SUN J, DENG K. Aerobic oxidation of biomass derived 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid catalyzed by a montmorillonite K-10 clay immobilized molybdenum acetylacetonate complex[J]. Green Chem,2014,16(5):2762−2770. doi: 10.1039/c4gc00062e
    [25] MARTÍNEZ-VARGAS D X, RIVERA DE LA ROSA J, SANDOVAL-RANGEL L, GUZMÁN-MAR J L, GARZA-NAVARRO M A, LUCIO-ORTIZ C J, DE HARO-DEL RÍO D A. 5-Hydroxymethylfurfural catalytic oxidation under mild conditions by Co (Ⅱ), Fe (Ⅲ) and Cu (Ⅱ) Salen complexes supported on SBA-15: Synthesis, characterization and activity[J]. Appl Catal A: Gen,2017,547:132−145. doi: 10.1016/j.apcata.2017.08.035
    [26] SAHA B, GUPTA D, ABU-OMAR M M, MODAK A, BHAUMIK A. Porphyrin-based porous organic polymer-supported iron(Ⅲ) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2, 5-furandicarboxylic acid[J]. J Catal,2013,299:316−320. doi: 10.1016/j.jcat.2012.12.024
    [27] ZHANG S, SUN X, ZHENG Z, ZHANG L. Nanoscale center-hollowed hexagon MnCo2O4 spinel catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid[J]. Catal Commun,2018,113:19−22. doi: 10.1016/j.catcom.2018.05.004
    [28] WEI Z, XIAO S, CHEN M, LU M, LIU Y. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over a Cu-acetonitrile complex[J]. New J Chem,2019,43(20):7600−7605. doi: 10.1039/C9NJ00465C
    [29] 谈冠希, 迟姚玲, 李双, 易玉峰, 靳广洲. 锰锆复合氧化物CO催化还原NO性能研究[J]. 燃料化学学报, 2019, 47(10): 1258-1264.

    TAN Guan-xi, CHI Yao-ling, LI Shuang, YI Yu-feng, JIN Guang-zhou. Performance of manganese-zirconium composite oxide in the catalytic reduction of NO by CO[J]. J Fuel Chem Technol, 47(10): 1258-1264.
    [30] CHEN L, YANG W, GUI Z, SARAVANAMURUGAN S, RⅡSAGER A, CAO W, QI Z. MnOx/P25 with tuned surface structures of anatase-rutile phase for aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran[J]. Catal Today,2019,319:105−112. doi: 10.1016/j.cattod.2018.05.049
    [31] HAN X, LI C, LIU X, XIA Q, WANG Y. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnOx-CeO2 composite catalysts[J]. Green Chem,2017,19:996−1004. doi: 10.1039/C6GC03304K
    [32] LIU B, ZHANG Z, LV K, DENG K, DUAN H. Efficient aerobic oxidation of biomass-derived 5-hydromethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide[J]. Appl Catal A: Gen,2014,472:64−71. doi: 10.1016/j.apcata.2013.12.014
    [33] NEAŢU F, MARIN R, FLOREA M, PETREA N, PAVEL O, PÂRVULESCU V. Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts[J]. Appl Catal B: Environ,2016,180:751−757. doi: 10.1016/j.apcatb.2015.07.043
    [34] GAWADE A B, NAKHATE A V, YADAV G D. Selective synthesis of 2, 5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural over MnFe2O4 catalyst[J]. Catal Today,2018,309:119−125. doi: 10.1016/j.cattod.2017.08.061
    [35] MISHRA D K, CHO J K, KIM Y J. Facile production of 2,5-diformylfuran from base-free oxidation of 5-hydroxymethyl furfural over manganese-cobalt spinels supported ruthenium nanoparticles[J]. J Ind Eng Chem,2018,60:513−519. doi: 10.1016/j.jiec.2017.11.040
    [36] CASANOVA O, IBORRA S, CORMA A. Biomass into chemicals: Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts[J]. ChemSusChem,2009,2:1138−1144. doi: 10.1002/cssc.200900137
    [37] SIYO B, SCHNEIDER M, RADNIK J, POHL M M, LANGER P, STEINFELDT N. Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials[J]. Appl Catal A: Gen,2014,478:107−116. doi: 10.1016/j.apcata.2014.03.020
    [38] KERDI F, RASS H A, PINEL C, BESSON M, PERU G, LEGER B, RIO S, MONFLIER E, PONCHEL A. Evaluation of surface properties and pore structure of carbon on the activity of supported Ru catalysts in the aqueous-phase aerobic oxidation of HMF to FDCA[J]. Appl Catal A: Gen,2015,506:206−219. doi: 10.1016/j.apcata.2015.09.002
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  568
  • HTML全文浏览量:  490
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 修回日期:  2020-12-18
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回