留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质阻挡放电条件下甲烷水蒸气重整和部分氧化反应制氢

徐锋 王玉明 李凡 聂欣雨 朱丽华

徐锋, 王玉明, 李凡, 聂欣雨, 朱丽华. 介质阻挡放电条件下甲烷水蒸气重整和部分氧化反应制氢[J]. 燃料化学学报(中英文), 2021, 49(3): 366-372. doi: 10.1016/S1872-5813(21)60022-1
引用本文: 徐锋, 王玉明, 李凡, 聂欣雨, 朱丽华. 介质阻挡放电条件下甲烷水蒸气重整和部分氧化反应制氢[J]. 燃料化学学报(中英文), 2021, 49(3): 366-372. doi: 10.1016/S1872-5813(21)60022-1
XU Feng, WANG Yu-ming, LI Fan, NIE Xin-yu, ZHU Li-hua. Hydrogen production by the steam reforming and partial oxidation of methane under the dielectric barrier discharge[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 366-372. doi: 10.1016/S1872-5813(21)60022-1
Citation: XU Feng, WANG Yu-ming, LI Fan, NIE Xin-yu, ZHU Li-hua. Hydrogen production by the steam reforming and partial oxidation of methane under the dielectric barrier discharge[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 366-372. doi: 10.1016/S1872-5813(21)60022-1

介质阻挡放电条件下甲烷水蒸气重整和部分氧化反应制氢

doi: 10.1016/S1872-5813(21)60022-1
基金项目: 国家自然科学基金(51874126)和黑龙江省自然科学基金(E2018053)资助
详细信息
    通讯作者:

    Tel: 0451-88036445,E-mail: xufeng79_79@163.com

  • 中图分类号: TQ116.2

Hydrogen production by the steam reforming and partial oxidation of methane under the dielectric barrier discharge

Funds: The project was supported by the National Natural Science Foundation of China (51874126) and Natural Science Foundation of Heilongjiang Province of China (E2018053)
More Information
  • 摘要: 构建了CH4-O2-N2-H2O反应体系,对介质阻挡放电条件下甲烷水蒸气重整和部分氧化制氢反应过程进行了研究,考察了H2O/CH4物质的量比、O2/N2物质的量比、气体总流量、放电电压及放电频率等参数对制氢效率的影响,并基于发射光谱原位诊断法分析了反应机理。结果表明,甲烷转化率和氢气产率随着H2O/CH4物质的量比、O2/N2物质的量比和放电电压的增加而增加,而随着反应气体总流量的增加而减小,随着放电频率的增加先增大后减小,在9.8 kHz处取得最大值。在H2O/CH4物质的量比1.82、O2/N2物质的量比2.1、总流量136 mL/min、放电电压18.6 kV及放电频率9.8 kHz的条件下,甲烷转化率与氢气产率分别达47.45%和21.33%。甲烷和水蒸气等反应物分子通过电子解离产生CHx·、H·、OH·、O·等自由基,进而通过自由基间的碰撞反应生成H2;H·自由基一方面来源于CH4的电子解离;另一方面来源于水蒸气一次解离以及OH·的进一步离解。部分氧化反应主要表现为O2电子解离形成的O·自由基以及水蒸气一次反应产物OH·自由基进一步离解形成的O·自由基对CH2·自由基的氧化。
  • 图  1  实验系统示意图

    Figure  1  Schematic diagram of the reaction system for the hydrogen production by methane steam reforming and partial oxidation under the dielectric barrier discharge

    图  2  H2O/CH4物质的量比对甲烷转化率及主要产物产率的影响

    Figure  2  Effect of H2O / CH4 molar ratio on the conversion of methane and the yields of main products for the steam reforming and partial oxidation of methane under the dielectric barrier discharge

    图  3  反应气体总流量对甲烷转化率及主要产物产率的影响

    Figure  3  Effect of total reactant gas flow rate on the conversion of methane and the yields of main products

    图  4  放电电压对甲烷转化率及主要产物产率的影响

    Figure  4  Effect of discharge voltage on the conversion of methane and the yields of main products

    图  5  放电频率对甲烷转化率及主要产物产率的影响

    Figure  5  Effect of the discharge frequency on the conversion of methane and the yields of main products

    图  6  O2/N2物质的量比对甲烷转化率及主要产物产率的影响

    Figure  6  Effect of the O2/N2 molar ratio on the conversion of methane and the yields of main products

    图  7  CH4-O2-N2-H2O反应体系最佳氢气产率下的发射光谱谱图

    Figure  7  Emission spectrum of the CH4-O2-N2-H2O system under the dielectric barrier discharge with the highest yield of hydrogen

    图  8  发射光谱检测到的各添加气体系中主要自由基的相对强度

    Figure  8  Relative intensity of major free radicals in each additive gas system detected by emission spectroscopy

    图  9  自由基反应历程示意图

    Figure  9  Proposed reaction pathways for the free radicals under the dielectric barrier discharge

  • [1] KHALIFEH O, MOSALLANEJAD A, TAGHVAEI H, RAHIMPOUR M R, SHARIATI A. Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies[J]. Appl Energy,2016,169:585−596. doi: 10.1016/j.apenergy.2016.02.017
    [2] WANG W, LI J, WEI X, DING J, FENG H, YAN J, YANG J. Carbon dioxide adsorption thermodynamics and mechanisms on MCM-41 supported polyethylenimine prepared by wet impregnation method[J]. Appl Energy,2015,142:221−228. doi: 10.1016/j.apenergy.2014.12.072
    [3] ALEKNAVICIUTE I, KARAYIANNIS T G, COLLINS M W, XANTHOS C. Methane decomposition under a corona discharge to generate COx-free hydrogen[J] Energy, 2013, 59(15): 432-439.
    [4] NISHIDA Y, CHIANG H C, CHEN T C, CHENG C Z. Efficient production of hydrogen by DBD type plasma discharges[J]. IEEE Trans Plasma Sci,2014,42(12):3765−3771. doi: 10.1109/TPS.2014.2354695
    [5] DU C M, MO J M, TANG J, HUANG D W, MO Z X, WANG Q K, MA S Z, CHEN Z J. Plasma reforming of bio-ethanol for hydrogen rich gas production[J]. Appl Energy,2014,133:70−79. doi: 10.1016/j.apenergy.2014.07.088
    [6] JASINSKI M, CZYLKOWSKI D, HRYCAK B, DORS M, MIZERACZYK J. Atmospheric pressure microwave plasma source for hydrogen production[J]. Int J Hydrogen Energy,2013,38(26):11473−11483. doi: 10.1016/j.ijhydene.2013.05.105
    [7] TAGHVAEI H, JAHANMIRI A, RAHIMPOUR M R, MOHAMADZADEHSHIRAZI M, HOOSHAMND N. Hydrogen production through plasma cracking of hydrocarbons: Effect of carrier gas and hydrocarbon type[J]. Chem Eng J,2013,226:384−392. doi: 10.1016/j.cej.2013.04.035
    [8] NAIR S A, NOZAKI T O, OKAZAKI K. Methane oxidative conversion pathways in a dielectric barrier discharge reactor Investigation of gas phase mechanism[J]. Chem Eng J,2007,132(1/3):85−95.
    [9] 陈亮, 鲁群苟, 胡辉, 贺李浩, 汪雨轩. 直流电晕等离子体重整甲烷二氧化碳制取合成气的研究[J]. 应用化工,2018,47(9):1947−1951. doi: 10.3969/j.issn.1671-3206.2018.09.036

    CHEN Liang, LU Qun-gou, HU Hui, HE Li-hao, WANG Yu-xuan. Study on CO2 reforming of CH4 to make synthesis gas by DC corona plasma[J]. Appl Chem Ind,2018,47(9):1947−1951. doi: 10.3969/j.issn.1671-3206.2018.09.036
    [10] GHANBARI M, BINAZADEH M, ZAFARNAK S, TAGHVAEI H, RAHIMPOUR M R. Hydrogen production via catalytic pulsed plasma conversion of methane: Effect of Ni-K2O/Al2O3loading, applied voltage, and argon flow rate[J]. Int J Hydrogen Energy,2020,45(27):13899−13910. doi: 10.1016/j.ijhydene.2020.03.099
    [11] 李凡, 朱丽华, 徐锋. 介质阻挡放电等离子体甲烷/水蒸气重整制氢[J]. 燃料化学学报,2019,47(5):566−573. doi: 10.3969/j.issn.0253-2409.2019.05.007

    LI Fan, ZHU Li-hua, XU Feng. Hydrogen production from methane/steam by dielectric barrier discharge plasma reforming[J]. J Fuel Chem Technol,2019,47(5):566−573. doi: 10.3969/j.issn.0253-2409.2019.05.007
    [12] SHAREEI M, TAGHVAEI H, AZIMI A, SHAHBAZI A, MIRZAEI M. Catalytic DBD plasma reactor for low temperature partial oxidation of methane: Maximization of synthesis gas and minimization of CO2[J]. Int J Hydrogen Energy,2019,44(60):31873−31883. doi: 10.1016/j.ijhydene.2019.10.120
    [13] 朱凤森, 张浩, 严建华, 倪明江, 李晓东. 磁旋滑动弧促进甲烷部分氧化重整制氢[J]. 高电压技术,2017,43(6):1893−1900.

    ZHU Feng-sen, ZHANG Hao, YAN Jian-hua, NI Ming-jiang, LI Xiao-dong. Rotating Gliding Arc Assisted Methane Partial Oxidation for Hydrogen Production[J]. High Voltage Eng,2017,43(6):1893−1900.
    [14] 王皓, 宋凌珺, 李兴虎, 岳丽蒙. 介质阻挡放电等离子体甲烷部分氧化重整制氢[J]. 物理化学学报,2015,31(7):1406−1412. doi: 10.3866/PKU.WHXB201504272

    WANG Hao, SONG Ling-jun, LI Xing-hu, YUE Li-meng. Hydrogen production from partial oxidation of methane by dielectric barrier discharge plasma reforming[J]. Acta Phys-Chim Sin,2015,31(7):1406−1412. doi: 10.3866/PKU.WHXB201504272
    [15] 周志鹏, 张济民, 叶桃红, 赵平辉, 夏维东. 电晕诱导介质阻挡放电/催化剂协同作用下甲烷的部分氧化水蒸气重整制氢[J]. 科学通报,2011,56(12):983−988.

    ZHOU Zhi-peng, ZHANG Ji-min, YE Tao-hong, ZHAO Ping-hui, XIA Wei-dong. Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor[J]. Chin Sci Bull,2011,56(12):983−988.
    [16] 徐锋, 李创, 朱丽华. 低温等离子体促进煤层甲烷活化转化[J]. 黑龙江科技大学学报,2015,25(6):597−601. doi: 10.3969/j.issn.2095-7262.2015.06.005

    XU Feng, LI Chuang, ZHU Li-hua. Study on activation and conversion of methane using non-thermal plasma[J]. J Heilongjiang Univ Sci Technol,2015,25(6):597−601. doi: 10.3969/j.issn.2095-7262.2015.06.005
    [17] 徐锋, 聂欣雨, 李凡, 田瑶瑶. 甲烷和水蒸气介质阻挡放电转化的影响因素[J]. 黑龙江科技大学学报,2020,30(1):56−60. doi: 10.3969/j.issn.2095-7262.2020.01.010

    XU Feng, NIE Xin-yu, LI Fan, TIAN Yao-yao. Influencing factors of methane-steam conversion with dielectric barrier discharge[J]. J Heilongjiang Univ Sci Technol,2020,30(1):56−60. doi: 10.3969/j.issn.2095-7262.2020.01.010
    [18] WANG Y F, TSAI C H, CHANG W Y, KUO Y M. Methane steam reforming for producing hydrogen in an atmospheric-pressure microwave plasma reactor[J]. Int J Hydrogen Energy,2010,35(1):135−140. doi: 10.1016/j.ijhydene.2009.10.088
  • 加载中
图(10)
计量
  • 文章访问数:  2382
  • HTML全文浏览量:  87
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2020-12-09
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回