留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaO/KIT-6固体碱催化剂的制备及其在酯交换反应中的催化性能

刘同慧 刘宏乾 褚格 毕世楠 于峰 潘大海 范彬彬 李瑞丰

刘同慧, 刘宏乾, 褚格, 毕世楠, 于峰, 潘大海, 范彬彬, 李瑞丰. CaO/KIT-6固体碱催化剂的制备及其在酯交换反应中的催化性能[J]. 燃料化学学报(中英文), 2021, 49(3): 321-328. doi: 10.1016/S1872-5813(21)60024-5
引用本文: 刘同慧, 刘宏乾, 褚格, 毕世楠, 于峰, 潘大海, 范彬彬, 李瑞丰. CaO/KIT-6固体碱催化剂的制备及其在酯交换反应中的催化性能[J]. 燃料化学学报(中英文), 2021, 49(3): 321-328. doi: 10.1016/S1872-5813(21)60024-5
LIU Tong-hui, LIU Hong-qian, CHU Ge, BI Shi-nan, YU Feng, PAN Da-hai, FAN Bin-bin, LI Rui-feng. Preparation of CaO/KIT-6 solid base catalyst and its catalytic performance in transesterification[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 321-328. doi: 10.1016/S1872-5813(21)60024-5
Citation: LIU Tong-hui, LIU Hong-qian, CHU Ge, BI Shi-nan, YU Feng, PAN Da-hai, FAN Bin-bin, LI Rui-feng. Preparation of CaO/KIT-6 solid base catalyst and its catalytic performance in transesterification[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 321-328. doi: 10.1016/S1872-5813(21)60024-5

CaO/KIT-6固体碱催化剂的制备及其在酯交换反应中的催化性能

doi: 10.1016/S1872-5813(21)60024-5
基金项目: 国家自然科学基金(21706176,21975174,21878203),山西省自然科学研究基金(201701D121027,201801D121057,201801D121061)和山西省科技创新重点团队项目(2014131006)资助
详细信息
    作者简介:

    刘同慧:liutonghui0023@163.com

    通讯作者:

    E-mail:yufeng@tyut.edu.cn

  • 中图分类号: TQ426.6

Preparation of CaO/KIT-6 solid base catalyst and its catalytic performance in transesterification

Funds: The project was supported by the National Natural Science Foundation of China (21706176, 21975174, 21878203), Natural Science Research Foundation of Shanxi Province (201701D121027, 201801D121057, 201801D121061) and Shanxi Science and Technology Innovation Key Team Project (2014131006)
  • 摘要: 采用浸渍法将活性氧化钙颗粒负载在介孔二氧化硅(KIT-6)表面,制备了酯交换反应催化剂CaO/KIT-6,并研究了其在大豆油与甲醇酯交换制备生物柴油反应中的催化性能。通过X射线衍射(XRD)、X射线光电子能谱(XPS)、CO2程序升温脱附(CO2-TPD)等测试手段对催化剂进行表征。在酯交换反应中,当醇油物质的量比为12、反应温度为65 °C、催化剂用量为8%、Ca/Si原子比为0.4、反应时间为2 h时,生物柴油转化率达到99.9%,CaO/KIT-6重复使用五次后催化活性仍保持在90%以上。与CaO及其他负载型催化剂相比,CaO/KIT-6催化剂在较低醇油物质的量之比、较短反应时间展现出更高的催化性能和良好的重复使用性。
  • 图  1  KIT-6的结构图

    Figure  1  Structure of KIT-6

    图  2  样品的XRD谱图

    Figure  2  XRD patterns of the samples

    图  3  CaK-0.4的XPS谱图

    Figure  3  XPS spectra of CaK-0.4

    图  4  样品的CO2-TPD谱图

    Figure  4  CO2-TPD profiles of the samples

    图  5  样品的N2吸附-脱附等温线和由DFT吸附理论计算得到的孔径分布图

    Figure  5  N2 adsorption-desorption isotherms and pore size distribution calculated from the DFT adsorption theory branch

    图  6  样品的TEM照片

    Figure  6  TEM images of (a) KIT-6, (b) CaK-0.2, (c) CaK-0.4, (d) CaK-0.6

    图  7  反应参数对CaK-0.4在酯交换反应中的催化活性的影响

    Figure  7  Effects of reaction parameters on the catalytic activities of CaK-0.4 for the transesterification reaction: (a): effect of molar ratio of methanol to oil (reaction temperature 65 °C, mass ratio of catalyst to oil 8%, Ca/Si atomic ratio 0.4, reaction time 2 h) (b): effect of reaction time (reaction temperature 65 °C, molar ratio of methanol to oil 12, Ca/Si atomic ratio 0.4, mass ratio of catalyst to oil 8%) (c): effect of Ca/Si atomic ratio (reaction temperature 65 °C, mass ratio of catalyst to oil 8%, molar ratio of methanol to oil 12, reaction time 2 h) (d): effect of mass ratio of catalyst to oil (reaction temperature 65 °C, Ca/Si atomic ratio 0.4, molar ratio of methanol to oil 12, reaction time 2 h)

    图  8  重复使用次数对大豆油转化率的影响

    Figure  8  Effect of repeat use of catalyst on transesterification activity

    表  1  催化剂的结合能

    Table  1  Binding energies of the catalysts

    Enerrgy E/eV
    Si 2pO 1sCa 2p
    CaK-0.2101.9531.9530.9346.8350.4
    CaK-0.4101.3529.9531.6346.6350.1
    CaK-0.6100.8529.9531.5346.6350.1
    下载: 导出CSV

    表  2  催化剂的结构特性

    Table  2  Textural properties of the catalysts

    SampleSBET/(m2·g−1)vp/(cm3·g−1)dp(av)/nm
    KIT-6 798 0.74 3.7
    CaK-0.2 93 0.28 6.8
    CaK-0.4 29 0.10 4.1
    CaK-0.6 20 0.10 6.3
    CaO 10 0.02 4.9
    下载: 导出CSV

    表  3  氧化钙和负载型催化剂制备生物柴油的催化性能比较

    Table  3  Comparison of the activity of calcium oxide and supported catalysts for biodiesel production

    CatalystFeedstockCatalyst characterizationsOperation conditionsResultsRef.
    CaOsoybeanoilSBET = 0.56 m2·g−1t = 65 °C, t = 3 h, methanol/
    oil = 12:1, catalyst content = 8%
    FAME yield = 95%[28]
    CaOsunflower oilNot reportedt = 60 °C, t = 100 min, methanol/oil =13:1conversion = 94%[14]
    CaO/n-Al2O3soybean oilSBET = 26 m2·g−1t = 150 °C, t = 6 h, methanol/oil = 9:1,
    Ca loading = 20 mmolmetal/gsupport,
    catalyst content = 3%
    FAME yield = 90%[29]
    CaO/SBA-15sunflower oilSBET = 7.4 m2·g−1,vtotal = 0.019 cm3·g−1t = 60 °C, t = 5 h, methanol/
    oil = 12:1, CaO content = 14%,
    catalyst content = 1%
    conversion = 95%[18]
    CaO/KIT-6soybean oilSBET = 29.4 m2·g−1,vtotal = 0.098 cm3·g−1t = 65 °C, t = 2 h, methanol/
    oil = 12:1, Ca/Si atomic ratio= 0.4,
    catalyst content = 8%
    conversion = 99.9%present work
    下载: 导出CSV
  • [1] MARINKOVIC D M, STANKOVIC M, VELICKOVIC A V, AVRAMOVIC J M, MILADINOVIC M R, STANKOVIC O O, VELJKOVIC V B, JOVANOVIC D M. Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives[J]. Renewable Sustainable Energy Rev,2016,56:1387−1408. doi: 10.1016/j.rser.2015.12.007
    [2] KIM H J, KANG B S, KIM M J, PARK Y M, KIM D K, LEE J S, LEE K Y. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst[J]. Catal Today,2004,9395:315−320.
    [3] EBIURA T, ECHIZEN T, ISHIKAWA A, MURAI K, BABA T. Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst[J]. Appl Catal A: Gen,2005,283(12):111−116.
    [4] DORADO M P, BALLESTEROS E, LOPEZ, FRANCISCO J, MITTELBACH M. Optimization of alkali-catalyzed transesterification of brassica carinata oil for biodiesel production[J]. Energy Fuels,2004,18(1):77−83. doi: 10.1021/ef0340110
    [5] VICENTE G, MARTINEZ M, ARACIL J. Integrated biodiesel production: a comparison of different homogeneous catalysts systems[J]. Bioresour Technol,2004,92(3):297−305. doi: 10.1016/j.biortech.2003.08.014
    [6] LOPEZ D E, GOODWIN J G, BRUCE D A, LOTERO E. Transesterification of triacetin with methanol on solid acid and base catalysts[J]. Appl Catal A: Gen,2005,295(2):97−105. doi: 10.1016/j.apcata.2005.07.055
    [7] DEMIRBAS A. Comparison of transesterification methods for production of biodiesel from vegetable oils and fats[J]. Energy Convers Manage,2008,49(1):125−130. doi: 10.1016/j.enconman.2007.05.002
    [8] DI SERIO M, MALLARDO S, CAROTENUTO G, TESSER R, SANTACESARIA E. Mg/Al hydrotalcite catalyst for biodiesel production in continuous packed bed reactors[J]. Catal Today,2012,195(1):54−58. doi: 10.1016/j.cattod.2012.01.013
    [9] REN Y, HE B, YAN F, WANG H, CHENG Y, LIN L, FENG Y, LI J. Continuous biodiesel production in a fixed bed reactor packed with anion-exchange resin as heterogeneous catalyst[J]. Bioresour Technol,2012,113:19−22. doi: 10.1016/j.biortech.2011.10.103
    [10] TANG Y, XU J, ZHANG J, LU Y. Biodiesel production from vegetable oil by using modified CaO as solid basic catalysts[J]. J Clean Prod,2013,42:198−203. doi: 10.1016/j.jclepro.2012.11.001
    [11] WU H, ZHANG J, LIU Y, ZHENG J, WEI Q. Biodiesel production from Jatropha oil using mesoporous molecular sieves supporting K2SiO3 as catalysts for transesterification[J]. Fuel Process Technol,2014,119:114−120. doi: 10.1016/j.fuproc.2013.10.021
    [12] GRYGLEWICZ S. Rapeseed oil methyl esters preparation using heterogeneous catalysts[J]. Bioresour Technol,1999,70(3):249−253. doi: 10.1016/S0960-8524(99)00042-5
    [13] YOOSUK B, UDOMSAP P, PUTTASAWAT B, KRASAE P. Improving transesterification acitvity of CaO with hydration technique[J]. Bioresour Technol,2010,101(10):3784−3786. doi: 10.1016/j.biortech.2009.12.114
    [14] GRANNADOS M L, POVES M D Z, ALONSO D M, MARISCAL R, GALISTEO F C, MORENOTOST R, SANTAMARIA J, FIERRO J L G. Biodiesel from sunflower oil by using activated calcium oxide[J]. Appl Catal B: Environ,2007,73(34):317−326.
    [15] GRANADOS M L, ALONSO D M, ALBARUBIO A C, MARISCAL R, OJEDA M, BRETTES P. Transesterification of Triglycerides by CaO: Increase of the Reaction Rate by Biodiesel Addition[J]. Energy Fuels,2009,23(4):2259−2263. doi: 10.1021/ef800983m
    [16] 孙辉. 固体碱催化植物油制备生物柴油的基础研究[D]. 杭州: 浙江大学, 2012.

    SUN Hui. Basic research on the preparation of biodiesel from vegetable oil catalyzed by solid base[D]. Hangzhou: Zhejiang University, 2012.
    [17] SEMWAL S, ARORA A K, BADONI R P, TULI D K. Biodiesel production using heterogeneous catalysts[J]. Bioresour Technol,2011,102(3):2151−2161. doi: 10.1016/j.biortech.2010.10.080
    [18] ALBUQUERQUE M C G, JIMENEZURBISTONDO I, SANTAMARIAGONZALEZ J, MERIDAROBLES J, MORENOTOST R, RODRIGUEZCASTELLON E, JIMENEZLOPEZ A, AZEVEDO D C S, CAVALCANTE C L, MAIRELESTORRES P. CaO supported on mesoporous silicas as basic catalysts for transesterification reactions[J]. Appl Catal A: Gen,2008,334(1):35−43.
    [19] WU H, ZHANG J, WEI Q, ZHENG J, ZHANG J. Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts[J]. Fuel Process Technol,2013,109:13−18. doi: 10.1016/j.fuproc.2012.09.032
    [20] KLEITZ F, CHOI S H, RYOO R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes[J]. Chem Commun,2003,9(17):2136−2137.
    [21] SONI K, RANA B S, SINHA A K, BHAUMIK A, NANDI M, KUMAR M, DHAR G M. 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts[J]. Appl Catal B: Environ,2009,90(1):55−63.
    [22] KIM T, KLEITZ F, PAUL B, RYOO R. MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer-butanol-water system[J]. J Am Chem Soc,2005,127(20):7601−7610. doi: 10.1021/ja042601m
    [23] PINHO G P, NEVES A A, QUEIROZ M E L R, SILVERIO F O. Matrix effect in pesticide quantification by gas chromatography[J]. Quim Nova,2009,(32):987−995.
    [24] THOMMES M, KANEKO K, NEIMARK A V, OLIVIER J P, RODRIGUEZREINOSO F, ROUQUEROL J, SING K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem,2015,87(9/10):1051−1069. doi: 10.1515/pac-2014-1117
    [25] LI H, WANG Y, MA X, WU Z, CUI P, LU W, LIU F, CHU H, WANG Y. A novel magnetic CaO-based catalyst synthesis and characterization: Enhancing the catalytic activity and stability of CaO for biodiesel production[J]. Chem Eng J,2020,391:123549. doi: 10.1016/j.cej.2019.123549
    [26] XIE W, WANG H. Immobilized polymeric sulfonated ionic liquid on core-shell structured Fe3O4/SiO2 composites: A magnetically recyclable catalyst for simultaneous transesterification and esterifications of low-cost oils to biodiesel[J]. Renewable Sustainable Energy,2020,145:1709−1719. doi: 10.1016/j.renene.2019.07.092
    [27] MEHER L C, VIDYA SAGAR D, NAIK S N. Technical aspects of biodiesel production by transesterification—a review[J]. Renewable Sustainable Energy Rev,2006,10(3):248−268. doi: 10.1016/j.rser.2004.09.002
    [28] RUBIOCABALLERO J M, SANTAMARIAGONZALEZ J, MERIDAROBLES J, MORENOTOST R, JIMENEZLOPEZ A, MAIRELESTORRES P. Calcium zincate as precursor of active catalysts for biodiesel production under mild conditions[J]. Appl Catal B: Environ,2009,91(1):339−346.
    [29] PASUPULETY N, GUNDA K, LIU Y, REMPEL G L, NG F T T. Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts[J]. Appl Catal A: Gen,2013,452:189−202. doi: 10.1016/j.apcata.2012.10.006
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  720
  • HTML全文浏览量:  246
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 修回日期:  2020-11-24
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回