留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤中方解石对活性焦脱硫脱硝性能的影响及机制

李朝 张慧荣 郭彦霞 程芳琴

李朝, 张慧荣, 郭彦霞, 程芳琴. 煤中方解石对活性焦脱硫脱硝性能的影响及机制[J]. 燃料化学学报(中英文), 2021, 49(4): 554-563. doi: 10.1016/S1872-5813(21)60033-6
引用本文: 李朝, 张慧荣, 郭彦霞, 程芳琴. 煤中方解石对活性焦脱硫脱硝性能的影响及机制[J]. 燃料化学学报(中英文), 2021, 49(4): 554-563. doi: 10.1016/S1872-5813(21)60033-6
LI Chao, ZHANG Hui-rong, GUO Yan-xia, CHENG Fang-qin. Effect of calcite on desulfurization and denitration performance of activated coke and its mechanism[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 554-563. doi: 10.1016/S1872-5813(21)60033-6
Citation: LI Chao, ZHANG Hui-rong, GUO Yan-xia, CHENG Fang-qin. Effect of calcite on desulfurization and denitration performance of activated coke and its mechanism[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 554-563. doi: 10.1016/S1872-5813(21)60033-6

煤中方解石对活性焦脱硫脱硝性能的影响及机制

doi: 10.1016/S1872-5813(21)60033-6
基金项目: 国家自然科学基金(21808130,U1810209)和山西省高等学校中青年拔尖创新人才资助计划资助
详细信息
    作者简介:

    李朝:734906597@qq.com

    通讯作者:

    Tel: 18636987985,E-mail: zhanghuirong@sxu.edu.cn

  • 中图分类号: TQ53 X51

Effect of calcite on desulfurization and denitration performance of activated coke and its mechanism

Funds: The project was supported by the National Natural Science Foundation of China (21808130, U1810209) and Young and Middle-aged Top Innovative Talent Funding Program in Universities of Shanxi Province
  • 摘要: 方解石是煤中主要含钙矿物质,通过物理混合在脱灰宁夏无烟煤上负载不同含量的方解石制备活性焦,并分析其对制备及脱硫脱硝的影响。结果表明,方解石对活性焦的孔结构和表面化学性质起调控作用。在脱硫过程中,随着方解石含量的增加,活性焦的硫容呈先升高后下降趋势,NX-2%CaCO3-AC表现出最佳的脱硫能力(84.0 mg/g),方解石的加入增加了π−π*含量,促进了SO2氧化过程;在脱硝过程中,CaCO3的添加促进了脱硝,添加2%CaCO3的脱硝率(16.9%)比未添加的活性焦的脱硝率(7.9%)提升了1.14倍,主要是由于碱性基团数量的提高;同时脱硫脱硝过程中,活性焦CaO的存在对脱硫脱硝具有不同程度的促进作用。与单独脱硫/脱硝相比,硫容升高,脱硝效率降低,主要是由于竞争性吸附及铵盐的生成。
  • FIG. 620.  FIG. 620.

    FIG. 620.  FIG. 620.

    图  1  活性焦脱硫脱硝反应装置示意图

    Figure  1  Schematic diagram of desulfurization and denitrification by AC

    图  2  不同方解石添加量的活性焦的XRD谱图

    Figure  2  XRD spectra of AC with different contents of calcite

    图  3  活性焦的SEM((a),(b))和EDS(c)照片

    Figure  3  SEM ((a), (b)) and EDS (c) images of AC

    图  4  N2吸附-脱附等温线(a)和孔径分布(b)

    Figure  4  N2 adsorption/desorption isotherms (a) and pore size distributions (b)

    图  5  活性焦的表面化学性质

    (a): XPS survey spectra of AC; (b):oxygen percentages of AC; (c): high-resolution C 1 s spectrum of AC; (d): atomic percentage distribution of the major functional group of AC

    Figure  5  Surface chemical properties of AC

    图  6  活性焦的硫容(a);活性焦的的硫容与表面氧含量(b)和π−π*含量(c)的关系

    Figure  6  (a) ACs’ sulfur capacity; the relationships between sulfur capacities and oxygen percentages (b) and π−π* bonds percentages (c) of AC

    图  7  负载方解石制活性焦对SO2的吸附机制

    Figure  7  Mechanism of SO2 adsorption on the AC by calcite

    图  8  活性焦的脱硝效率(a);活性焦的脱硝效率与表面氧含量(b)和π−π*含量(c)的关系

    Figure  8  ACs’ NO conversion (a); the relationships between NO conversion and oxygen percentages(b) and π−π* bonds percentages(c) of AC

    图  9  负载方解石制活性焦对NO的脱除机制

    Figure  9  Removal mechanism of NO from AC by calcite

    图  10  活性焦同时脱硫脱硝的硫容(a)和脱硝效率(b)

    Figure  10  ACs’sulfur capacity (a) and NO conversion (b) of simultaneous desulfurization and denitrification

    表  1  原煤的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of raw coal

    Proximate analysis wad/%Ultimate analysis wdaf/%
    MVAFCCHStNOa
    0.6711.226.1281.9991.332.820.271.274.14
    M: moisture; A: ash; V: volatile matter; a: by difference
    下载: 导出CSV

    表  2  原煤的灰成分分析

    Table  2  Ash component analysis of raw coal

    Component w/%
    SiO2Al2O3CaOSO3Fe2O3TiO2MgONa2OK2O
    3928.311.37.9210.40.973.083.170.7
    下载: 导出CSV

    表  3  方解石添加含量对活性焦制备过程中的参数变化和孔结构的参数变化

    Table  3  Parameters of ACs with different contents of calcite during AC preparation

    SampleWeight loss/%Burn-off/%Yield/%Pore structure analysis by BET
    SBET/
    (m2·g−1)
    Smic/
    (m2·g−1)
    Smic/
    SBET/%
    vmic
    (cm3·g−1)
    vmec+mac
    (cm3·g−1)
    vtotal
    (cm3·g−1)
    dave/nm
    NX-AC20.0240.1047.91746645860.250.070.321.72
    NX-2%CaCO3-AC20.4654.3036.35516385750.150.120.272.10
    NX-4%CaCO3-AC20.4064.0028.66460400870.150.100.161.41
    NX-6%CaCO3-AC20.2665.5027.51413232560.090.190.282.71
    NX-8%CaCO3-AC19.3066.0027.44408244600.100.160.262.55
    下载: 导出CSV
  • [1] 林国鑫, 于馨凝, 刘少俊. 煤质成分对煤基活性炭活化成孔的影响机制[J]. 燃烧科学与技术,2020,26(1):81−86.

    LIN Guo-xin, YU Xin-ning, LIU Shao-jun. Influence mechanism of coal composition on activation pore formation of coal- based activated carbon[J]. J Combust Sci Technol,2020,26(1):81−86.
    [2] 解炜. 我国煤基活性炭的应用现状及发展趋势[J]. 煤炭科学技术,2017,45(10):16−23. doi: 10.13199/j.cnki.cst.2017.10.003

    XIE Wei. Application status and development trend of coal-based activated carbon in China.[J]. Coal Sci Technol,2017,45(10):16−23. doi: 10.13199/j.cnki.cst.2017.10.003
    [3] 邱敬贤, 刘君, 彭芬. 煤基活性炭在环保领域的应用发展综述[J]. 中国环保产业,2019,11:23−28. doi: 10.3969/j.issn.1006-5377.2019.09.008

    QIU Jin-xian, LIU Jun, PENG Fen. Summarization on application development of coal-based activated carbon in environmental protection field[J]. China Environ Protect Ind,2019,11:23−28. doi: 10.3969/j.issn.1006-5377.2019.09.008
    [4] 王忠乐. 煤中矿物质的特性及其对焦炭结构和性质的影响研究[D]. 合肥: 安徽工业大学, 2014.

    WANG Zhong-le. A study on the characteristics of the minerals in coal and their effects on structures and properties of the coke[D]. Hefei: Anhui University of Technology, 2014.
    [5] CLEMENS A H, DAMIANO L F, MATHESON T W. The effect of calcium on the rate and products of steam gasification of char from low rank coal[J]. Fuel,1998,77(9):1017−1020.
    [6] 熊杰, 周志杰, 许慎启. 碱金属对煤热解和气化反应速率的影响[J]. 化工学报,2011,62(1):192−198.

    XIONG Jie, ZHOU Zhi-jie J, XU Shen-qi. Effect of alkali metal on rate of coal pyrolysis and gasification[J]. J Chem Ind Eng,2011,62(1):192−198.
    [7] 刘慧君, 周锦文, 王杰. 钙基添加剂对煤慢速和快速热解行为的影响[J]. 现代化工,2011,31(3):70−72.

    LIU Hui-jun, ZHOU Jin-wen, WANG Jie. Effects of Ca-based additives on behaviors of slow and fast coal pyrolysis[J]. Mod Chem Ind,2011,31(3):70−72.
    [8] 何旭. 矿物质对煤基活性炭成孔过程影响及催化甲烷裂解行为研究[D]. 大连: 大连理工大学, 2018.

    HE Xu. Effect of mineral matters on the coal-based activated carbons and catalytic methane decomposition to hydrogen[D]. Dalian: Dalian University of Technology, 2018.
    [9] 黄碧珠. 基于造纸白泥制备富钙成型活性炭的工艺优化及其应用[D]. 福州: 福建农林大学, 2015.

    HUANG Bi-zhu. Optimization on the preparation of calcium-rich shaped activated carbon based on lime mud of paper mill and its application[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015.
    [10] HUANG Z, LIU Z, ZHANG X. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature[J]. Appl Cataly B: Environ,2006,63(3):260−265.
    [11] ZHANG H, NIU J, YIN X. Role of inherent pyrite in coal on physicochemical structure of activated carbon and adsorption capacity[J]. Fuel,2020,262:116527. doi: 10.1016/j.fuel.2019.116527
    [12] ZHANG K, HE Y, WANG Z. Multi-stage semi-coke activation for the removal of SO2 and NO[J]. Fuel,2017,210:738−747. doi: 10.1016/j.fuel.2017.08.107
    [13] 许慎启, 周志杰, 代正华. 碱金属及灰分对煤焦碳微晶结构及气化反应特性的影响[J]. 高校化学工程学报,2010,24(1):64−70. doi: 10.3969/j.issn.1003-9015.2010.01.012

    XU Shen-qi, ZHOU Zhi-jie, DAI Zheng-hua. Effects of alkalimetal and ash on crystallite structure of coal char during pyrolysis and on gasification reactivity[J]. J Chem Eng Chin Univ,2010,24(1):64−70. doi: 10.3969/j.issn.1003-9015.2010.01.012
    [14] 熊园斌, 王勤辉, 杨玉坤. 碳酸钙对煤热解特性影响的实验研究[J]. 热力发电,2016,45(1):14−19. doi: 10.3969/j.issn.1002-3364.2016.01.014

    XIONG Yuan-bing, WANG Qin-hui, YANG Yu-kun. Experimentals study on influence of calcium carbonate on coal pyrolysis behaviors[J]. Ther Power Gen,2016,45(1):14−19. doi: 10.3969/j.issn.1002-3364.2016.01.014
    [15] 刘冬冬, 高继慧, 吴少华. FeCl3和空气预氧化对煤焦结构及活化过程中孔隙生成的影响[J]. 煤炭学报,2017,42(4):1034−1042.

    LIU Dong-dong, GAO Ji-hui, WU Shao-hua. The effects of FeCl3 and air pre-oxidation on char structure and pore development during activation[J]. J China Coal Soc,2017,42(4):1034−1042.
    [16] PANDE A R. Catalytic gasification of active charcoal by carbon dioxide: influence of type of catalyst and carbon particle size[J]. Fuel,1992,71(11):1299−1302. doi: 10.1016/0016-2361(92)90057-U
    [17] CHEN X, GUO Y, CUI J. Activated carbon preparation with the addition of coke-making by-product—coke powder: Texture evolution and mechanism[J]. J Cleaner Prod,2019,237:117812. doi: 10.1016/j.jclepro.2019.117812
    [18] ZHANG M-H, FAN J, CHI K. Synthesis, characterization, and catalytic performance of NiMo catalysts supported on different crystal alumina materials in the hydrodesulfurization of diesel[J]. Fuel Process Technol,2017,156:446−453. doi: 10.1016/j.fuproc.2016.10.007
    [19] 安东海, 韩晓林, 程星星. 不同烟气组分对粉状活性焦吸附汞的影响机理[J]. 化工学报,2019,70(4):1575−1582.

    AN Dong-hai, HAN Xiao-lin, CHENG Xing-xing. Effect mechanisms of different flue gas on adsorption of mercury by powder activated coke[J]. J Chem Ind Eng,2019,70(4):1575−1582.
    [20] WANG L, SUN F, GAO J. Adjusting the porosity of coal-based activated carbons based on a catalytic physical activation process for gas and liquid adsorption[J]. Energy Fuels,2018,32(2):1255−1264.
    [21] SCHÖNHERR J, BUCHHEIM J, SCHOLZ P, ADELHELM P. Boehm Tltration Revisited(Part II): A comparison of Boehm titration with other analytical techniques on the quantification of oxygen-containing surface groups for a variety of carbon materials[J]. C- J Carbon Res, 2018, 4(2): 22.
    [22] YANG L, JIANG X, JIANG W. Cyclic regeneration of pyrolusite-modified activated coke by blending method for flue gas deslfurization[J]. Energy Fuels,2017,31(4):4556−64.
    [23] 李阳, 朱玉雯, 高继慧. 活性焦孔结构演变规律及对脱硫性能的影响[J]. 化工学报,2015,66(3):1126−1132.

    LI Yang, ZHU Yu-weng, GAO Ji-hui. Activated coke pore structure evolution and its influence on desulfuration[J]. J Chem Ind Eng,2015,66(3):1126−1132.
    [24] GUO F, HECKER W C. Effects of CaO and burnout on the kinetics of NO reduction by beulah zap char.[J] Symp (Int) on Combus, 1996, 26 (2): 2251–2257.
    [25] ÁLVAREZ P, MODESTO P. Vanadium supported on carbon coated honeycomb monoliths for the selective catalytic reduction of NO at low temperatures: Influence of the oxidation pre-treatment[J]. Carbon,2006,44(3):407−417. doi: 10.1016/j.carbon.2005.09.011
    [26] BOVANO A, HERRERA C, LARRUBIA M A. Vanadium loaded carbon-based monoliths for the on-board no reduction: Influence of temperature and period of the oxidation treatment[J]. Chem Eng J,2010,160(2):623−633. doi: 10.1016/j.cej.2010.03.086
    [27] XIE W, LIANG D, LI L. Surface chemical properties and pore structure of the activated coke and their effects on the denitrification activity of selective catalytic reduction[J]. Int J Coal Sci Technol,2019,6(4):595−602.
    [28] XIE W, SUN Z, XIONG Y. Effects of surface chemical properties of activated coke on selective catalytic reduction of NO with NH3 over commercial coal-based activated coke[J]. Int J Min Sci Technol,2014,24(4):471−475. doi: 10.1016/j.ijmst.2014.05.009
    [29] YUWEN Z, HAOYU L I, DONGDONG L. Development mechanism of pore structures based on burn-off properties of carbon structures during activation process[J]. J China Coal Soc,2017,42(12):3292−3299.
    [30] 李兰廷. 活性焦干法联合脱硫脱硝的正交实验[J]. 煤炭学报,2009,34(10):1400−1404. doi: 10.3321/j.issn:0253-9993.2009.10.020

    LI Lan-ting. Orthogonal test on combined desulphurization and denitration by activated char[J]. J China Coal Soc,2009,34(10):1400−1404. doi: 10.3321/j.issn:0253-9993.2009.10.020
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  73
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2021-01-11
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回