留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

淖毛湖煤热解重油直接转化制备芳烃化合物研究

黄澎 吴艳 马博文 毛学锋 刘敏

黄澎, 吴艳, 马博文, 毛学锋, 刘敏. 淖毛湖煤热解重油直接转化制备芳烃化合物研究[J]. 燃料化学学报(中英文), 2021, 49(5): 664-672. doi: 10.1016/S1872-5813(21)60039-7
引用本文: 黄澎, 吴艳, 马博文, 毛学锋, 刘敏. 淖毛湖煤热解重油直接转化制备芳烃化合物研究[J]. 燃料化学学报(中英文), 2021, 49(5): 664-672. doi: 10.1016/S1872-5813(21)60039-7
HUANG Peng, WU Yan, MA Bo-wen, MAO Xue-feng, LIU Min. Study on direct conversion of Naomaohu coal pyrolysis heavy oil to aromatics[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 664-672. doi: 10.1016/S1872-5813(21)60039-7
Citation: HUANG Peng, WU Yan, MA Bo-wen, MAO Xue-feng, LIU Min. Study on direct conversion of Naomaohu coal pyrolysis heavy oil to aromatics[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 664-672. doi: 10.1016/S1872-5813(21)60039-7

淖毛湖煤热解重油直接转化制备芳烃化合物研究

doi: 10.1016/S1872-5813(21)60039-7
基金项目: 国家重点研发计划(2016YFB0600305)资助
详细信息
    通讯作者:

    Tel: 010-84262941, E-mail: squallok@qq.com

  • 中图分类号: TQ523;TE624

Study on direct conversion of Naomaohu coal pyrolysis heavy oil to aromatics

Funds: The project was supported by the National Key Research and Development Project (2016YFB0600305)
  • 摘要: 采用实沸点蒸馏对新疆淖毛湖煤热解焦油进行了馏分分离,对其中> 320 ℃重质馏分进行四组分分析可以发现,胶质含量28.84%,沥青质含量35.12%,属于加氢中很难以转化的组分;13C-NMR结果显示,重油中芳香碳相对摩尔占比71.16%,说明重质馏分中芳香族化合物占主体地位。采用悬浮床+固定床联合裂化工艺处理重质馏分,并对产物油进行分析,结果显示,沥青质胶质等几乎完全转化,< 180 ℃石脑油收率66.95%,> 180 ℃柴油馏分收率17.84%,硫、氮、氧等杂原子得到深度脱除。对< 180 ℃石脑油进行催化重整,环烷烃减少了60.23%,芳香烃增加了65.8%,说明重整过程中主要发生了环烷烃脱氢芳化反应,正构烷烃减少了13.42%,说明同时伴有正构烷烃异构化和环化反应。催化重整产物油中苯、甲苯、二甲苯及乙苯的含量较多,分别为11.97%、23.15%、21.43%、3.48%。煤热解重油直接转化过程中煤基本结构单元的传递性得到了显著的体现。
  • FIG. 658.  FIG. 658.

    FIG. 658.  FIG. 658.

    图  1  悬浮床+固定床工艺流程示意图

    Figure  1  Process flow chart of suspended bed and fixed bed

    图  2  重整流程示意图

    Figure  2  Flow chart of reforming

    1: compressor; 2: raw material tank; 3: feed pump; 4: preheater; 5: reforming reactor; 6: separator

    图  3  热解重油四组分分析

    Figure  3  Analysis of heavy oil fraction components

    图  4  重油馏分 13C-NMR谱图

    Figure  4  13C-NMR spectrum of heavy oil

    图  5  加氢裂化全流程物料平衡

    Figure  5  Material balance in hydrocracking process

    图  6  催化重整前后族组成的变化

    Figure  6  Analysis of group composition before and after catalytic reforming

    (a): n-paraffins; (b): i-paraffins; (c): naphthene; (d): aromatics

    图  7  芳烃脱氢反应

    Figure  7  Dehydrogenation and aromatizing reactions

    图  8  链烷烃环化脱氢反应

    Figure  8  cyclization and dehydrogenation reactions

    图  9  异构化反应

    Figure  9  isomerization reaction

    图  10  重整油中主要芳烃化合物含量对比

    Figure  10  Main benzene compounds content of the reformed oil

    图  11  全流程物料平衡

    Figure  11  Material balance

    图  12  煤焦油生产芳烃技术路线图

    Figure  12  Technical route to produce aromatic hydrocarbon from coal tar

    表  1  淖毛湖煤焦油及重质馏分性质

    Table  1  Properties of coal tar and heavy oil

    PropertiesSample
    coal tar> 320 ℃ heavy oil
    Density/(g·cm−31.0211.059
    H w/%8.988.07
    C w/%84.2785.43
    S w/%0.090.11
    N w/%0.881.23
    H/C1.281.13
    下载: 导出CSV

    表  2  淖毛湖煤焦油蒸馏结果

    Table  2  Coal tar distillation results

    t / ℃Distillate yield w/%Cumulative yield w/%
    < 23014.4114.41
    230−2807.8922.30
    275−3007.7930.09
    280−3207.2237.31
    320−3504.8442.15
    > 35057.85100.00
    下载: 导出CSV

    表  3  联合裂化工艺反应条件

    Table  3  Reaction conditions of combined cracking process

    Suspended bed reactor
    t /℃p/MPaspace velocity /h−1gas-liquid ratio (v/vcatalyst amount w/%recycle ratio
    450190.720000.030.15
    Fixed bed reactor
    t /℃p/MPagas-liquid ratio (v/vspace velocity /h−1
    refining reactorcracking reactor
    35039015.012000.5
    下载: 导出CSV

    表  4  悬浮床加氢裂化催化剂主要性质

    Table  4  Properties of suspended hydrocracking catalyst

    FeaturesAnalysis method
    AppearanceYellow
    powder
    Purity w/%> 99HPLC/ICP
    Particle size/mm< 0.1
    Mo w/%27−29SH/T0749
    S w/%24−28SH/T0749
    Melting point/℃≮ 250GB/T2539
    下载: 导出CSV

    表  5  固定床加氢裂化催化剂主要性质

    Table  5  Properties of fixed-bed hydrocracking catalyst

    CatalystRefiningCracking
    Composition w/%
    NiO2.8−4.35.1−7.5
    MoO321.6−24.2
    WO319.6−24.8
    Carrierγ-Al2O3γ-Al2O3-SiO2
    Shapeclovercylinder
    Surface area A/(m2·g−1≮190≮170
    Mechanical strength/(N·mm−1≮18≮18
    下载: 导出CSV

    表  6  重整催化剂性质

    Table  6  Properties of reforming catalyst

    Composition
    w/%
    CarrierSurface area A/
    (m2·g−1
    Pore
    volume/
    (mL·g−1
    mechanical
    strength/
    (N·mm−1
    PtReClγ-Al2O3> 1800.45−0.55> 10
    0.270.271.31
    下载: 导出CSV

    表  7  四组分的元素分析

    Table  7  Four-component element analysis

    FractionElement analysis w/%
    HCO*NS
    Saturated8.2984.396.211.020.09
    Aromatic8.1785.115.660.990.07
    Colloid8.0187.163.381.340.11
    Asphaltene7.6587.533.411.270.14
      *: by difference
    下载: 导出CSV

    表  8  重油 13C-NMR谱图归属及相对含量

    Table  8  13C-NMR spectrum attribution and relative content of heavy oil

    Chemical shift δPeak attributionRelative molar ratio / %
    0−170visible carbon100
    10−70Aliphatic carbon28.84
    1.10−28methyl carbon, naphthenic carbon14.63
    1.228−70methylene, quaternary, α carbon on aromatic carbon14.21
    2100−170Aromatic carbon71.16
    2.1100−130secondary carbon linked by aromatic rings,
    tertiary carbon, aromatic carbon with protons
    33.01
    2.3130−150aromatic carbon linked to carbon bond37.57
    2.6150−170aromatic carbon linked to heteroatoms (N, S)0.58
    170−188carboxyl carbon
    188−220carbonyl carbon
    下载: 导出CSV

    表  9  加氢裂化产物性质分析

    Table  9  Properties of hydrocracking products

    Properties< 180 ℃> 180 ℃
    Dnsity/(kg·m−3770.1876.1
    Bromine value0
    Refractive index1.42231.4633
    Aromatic potential w/%71.8
    Cetane number39
    Freezing point/℃−41
    Average molecular weight110190
    Elemental analysis w/%C86.2387.06
    H13.7712.94
    H/C1.921.78
    Trace analysis/(mg·kg−1N1.05.1
    Snd*1.1
    *: not detected
    下载: 导出CSV

    表  10  催化重整试验

    Table  10  The experimental result of catalytic reforming

    Parameter Value
    Input w/%
    Naphtha100
    Output w/%
    Reformed oil91.12
    H23.56
    C1−45.32
    Total100.00
    下载: 导出CSV
  • [1] 陈浩. 芳烃产业发展现状及趋势分析[J]. 炼油技术与工程,2020,50(7):1−4.

    CHEN Hao. Analysis on the development status and trend of aromatics industry[J]. Pet Refin Eng,2020,50(7):1−4.
    [2] CHEN Z H, HOU Y L, SONG W L, CAI D L, YANG Y F, CUI Y, QIAN W Z. High-yield production of aromatics from methanol using a temperature-shifting multi-stage fluidized bed reactor technology[J]. Chem Eng J,2019,371(9):639−646.
    [3] 杨成, 张成华, 许健, 吴宝山, 杨勇, 李永旺. 氧化锆催化合成气直接转化制芳烃[J]. 燃料化学学报,2016,44(7):837−844. doi: 10.3969/j.issn.0253-2409.2016.07.009

    YANG Cheng, ZHANG Cheng-hua, XU Jian, WU Bao-shan, YANG Yong, LI Yong-wang. One-step catalytic conversion of syngas to aromatics over ZrO2 catalyst[J]. J Fuel Chem Technol,2016,44(7):837−844. doi: 10.3969/j.issn.0253-2409.2016.07.009
    [4] MARCO M, LOPEZ J A, HE Q, MORGAN D J, RYABENKOVA Y, BARTLEY J K, CARLEY A F, TAYLOR S H, KIELY C J, KHALID K, JUTCHING G J. Modified zeolite ZSM-5 for the methanol to aromatics reaction[J]. Catal Sci Technol,2011,2(1):105−112.
    [5] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002.

    XIE Ke-chang. Coal Structure and Its Reactivity[M]. Beijing: Science press, 2002.
    [6] WANG J P, LI G Y, GUO R, LI A Q, LIANG Y H. Theoretical and experimental insight into coal structure: Establishing a chemical model for Yuzhou lignite[J]. Energy Fuels,2016,31(1):124−132.
    [7] XU Y, CH X, WANG L, BEI K, WANG J L, CHOU L M, PAN Z Y. Progress of Raman spectroscopic investigations on the structure and properties of coal[J]. J Raman Spectrosc,2020,51(9):1874−1884. doi: 10.1002/jrs.5826
    [8] WU D, ZhANG W. Evolution mechanism of macromolecular structure in coal during heat treatment: Based on FTIR and XRD in situ analysis techniques[J]. J Spectrosc,2019,2019(4):1−18.
    [9] 谢克昌, 高晋生. 煤的热解、炼焦和煤焦油加工[M]. 北京: 化学工业出版社, 2010.

    XIE Ke-chang, GAO Jin-sheng. Coal Pyrolysis, Coking and Coal Tar Processing[M]. Beijing: Chemical Industry Press, 2010.
    [10] 史航. 煤及显微组分热解行为研究[D]. 大连: 大连理工大学, 2020.

    SHI Hang. Pyrolysis behavior of coals and their macerals[D]. Dalian: Dalian University of Technology, 2020.
    [11] SAKAI T, MURAKAMI T, YAMAMOTO Y, UCHIYAMA H, KOMOTO T, TEZUKA T. A naphthenic oil of hydrogenated coal tar distil-late as a lubricant with low solidification pressure[J]. J Synth Lubr,1992,9(3):223−235. doi: 10.1002/jsl.3000090304
    [12] RUCKMICK S C, HURTUBISE R, SILVER H F. Separation and characterization of large-ring number polycyclic aromatic hydrocarbons in non-distillable, pyridine soluble coal-liquids[J]. Fuel,1986,65(12):1677−1683. doi: 10.1016/0016-2361(86)90268-1
    [13] 王秀红. 煤液化油中芳烃/环烷烃分离规律及其机理研究[D]. 太原: 太原理工大学, 2011.

    WANG Xiu-hong. Separation rule of aromatics/cyclichydrocarbon in coal liquefaction and its mechanism in separation[D]. Taiyuan: Taiyuan University of Technology, 2011.
    [14] BALSTER L M, CORPORAN E, DEWITT M J, EDWARDS T, ERVIN J S, GRAHAM J L, LEE S Y, PAL S, PHELPS D K, RUDNICK L S, SANTORO R J, SCHOBERT H H, SHAFER L M, STRIEBICH R C, WEST Z J, WILSON G R, WOODWARD R, ZABARNICK S. Development of an advanced, thermally stable, coal-based jet fuel[J]. Fuel Process Technol,2008,89(4):364−378. doi: 10.1016/j.fuproc.2007.11.018
    [15] ZEIGLER C, WILTON N, ROBBAT A. Toward the accurate analysis of C1-C4 polycyclic aromatic sulfur heterocycles[J]. Anal Chem,2012,84(5):2245−2252. doi: 10.1021/ac202845x
    [16] BAE J S, HWANG I S, KWEON Y J, CHOI Y C, PARK S J, KIM H J, JUNG HEON, HAN C. Economic evaluations of direct, indirect and hybrid coal liquefaction[J]. Korean J Chem Eng,2012,29(7):868−875. doi: 10.1007/s11814-011-0266-3
    [17] 张昌鸣, 李允梅, 令狐文生, 王志杰, 杨建丽, 刘振宇. 气-液色谱联合分析煤油共炼产物族组成[J]. 分析试验室,2003,(2):24−26. doi: 10.3969/j.issn.1000-0720.2003.02.008

    ZHANG Chang-ming, LI Yun-mei, LINGHU Wen-sheng, WANG Zhi-jie, YANG Jian-li, LIU Zhen-yu. Analysis of group composition in product from coprocessing of coal and petroleum resid by gas-liquid chromatography[J]. Chin J Anal Lab,2003,(2):24−26. doi: 10.3969/j.issn.1000-0720.2003.02.008
    [18] 陈繁荣, 马晓迅, 曹巍, 杜鹏鹏, 孙鸣. 陕北中低温煤焦油常压馏分的GC/MS分析[J]. 煤炭转化,2013,36(4):52−56. doi: 10.3969/j.issn.1004-4248.2013.04.012

    CHEN Fan-rong, MA Xiao-xun, CAO Wei, DU Peng-peng, SUN Ming. Atmospheric distillation and GC/MS analysis of coal tar in low temperature from northern Shaanxi[J]. Coal Convers,2013,36(4):52−56. doi: 10.3969/j.issn.1004-4248.2013.04.012
    [19] 易兰. 煤直接转化液体产物中芳香族化合物缔合结构解析与组分分离[D]. 杭州: 浙江大学, 2020.

    YI Lan. Association structure analysis and component separation of aromactic compounds in liquid products from direct coal conversion[D]. Hangzhou: Zhejiang University, 2020.
    [20] 王伟. 中低温煤焦油重质组分分析及其加氢性能研究[D]. 太原: 太原理工大学, 2019.

    WANG Wei. Characterization and hydrogenation performance of heavy components of medium and low temperature coal tar[D]. Taiyuan: Taiyuan University of Technology, 2019.
    [21] 蔺华林, 李永伦, 王国龙, 张德祥, 高晋生. 煤液化油的梯度洗脱及芳烃组成分析[J]. 自然科学版,2010,36(4):488−492.

    LIN Hua-lin, LI Yong-lun, WANG Guo-long, ZHANG De-xiang, GAO Jin-sheng. Gradientrlution of coal liquefaction oil and analysis of aromatics constitutes[J]. J East China Univ Sci Technol, Nat Sci Ed,2010,36(4):488−492.
    [22] 吴艳, 颜丙峰, 赵渊, 胡发亭. 基于分子质量的煤沥青芳香分组成结构表征[J]. 煤炭学报,2018,43(11):3226−3231.

    WU yan, YAN Bing-feng, ZHAO Yuan, HU Fa-ting. Structural characterization of coal tar pitch aromatic component based on molecular weight[J]. J China Coal Soc,2018,43(11):3226−3231.
    [23] 黄澎, 张晓静, 毛学锋, 李伟林. 神府煤液化油加氢精制过程中硫氮化合物分布的变化[J]. 燃料化学学报,2016,44(1):37−43. doi: 10.3969/j.issn.0253-2409.2016.01.006

    HUANG Peng, ZHANG Xiao-jing, MAO Xue-feng, LI Wei-lin. Change of sulfur and nitrogen compounds in the direct liquefaction oil from Shenfu coal upon the hydrofining process[J]. J Fuel Chem Technol,2016,44(1):37−43. doi: 10.3969/j.issn.0253-2409.2016.01.006
    [24] SUN M, ZHANG D, YAO Q X, LIU Y Q, SU X P, JIA C Q, HAO Q Q, MA X X. Separation and Composition Analysis of GC/MS Analyzable and Unanalyzable Parts from Coal Tar[J]. Energy Fuels,2018,32(7):7404−7411. doi: 10.1021/acs.energyfuels.8b01054
    [25] HUANG P, ZhANG X J, MAO X F. Research on the production of aromatic hydrocarbon via hydroreforming a light fraction in direct coal liquefaction oil[J]. Energy Fuels,2015,29(1):86−90. doi: 10.1021/ef502146a
    [26] 王国龙, 黄珏, 徐蓉, 张德祥. 溶剂萃取煤液化油中芳烃[C] //上海市化学化工学会-2009年度学术年会论文集. 上海: 湖北教育出版社, 2009: 127−129.

    WANG Guo-long, HUANG Yu, XU Rong, ZHANG De-xiang. Solvent extraction of aromatic hydrocarbons from coal liquefaction oil[C] // Shanghai Society of Chemistry and Chemical Engineering-Proceedings of 2009 Annual Academic Conference. Shanghai: Hubei Education Press, 2009: 127−129.
    [27] 黄澎, 李文博, 毛学锋, 赵鹏. 中温热解焦油重馏分悬浮床加氢裂化的研究[J]. 燃料化学学报,2020,48(2):154−162. doi: 10.3969/j.issn.0253-2409.2020.02.004

    UANG Peng, LI Wen-bo, MAO Xue-feng, ZHAO Peng. Study on suspension bed hydrocracking of medium temperature pyrolytic heavy tar fraction[J]. J Fuel Chem Technol,2020,48(2):154−162. doi: 10.3969/j.issn.0253-2409.2020.02.004
    [28] BONNIFAY P, CHA B, BARBIER J C, VIDAL A. Maximizing aromatics production goal of IFP process[J]. Oil Gas J,1976,48−52.
  • 加载中
图(13) / 表(10)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  77
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-01-24
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-05-28

目录

    /

    返回文章
    返回