留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Selective breaking of C−O bonds in hydrodeoxygenation of 4-methylphenol over CoMoS/ZrO2

LI Zhi-qin WANG Ying YIN Chan-juan REN Xiao-xiong QIU Ze-gang

李志勤, 王英, 尹婵娟, 任枭雄, 邱泽刚. CoMoS/ZrO2催化4-甲基苯酚加氢脱氧中C−O键的选择性断裂[J]. 燃料化学学报(中英文), 2021, 49(4): 522-528. doi: 10.1016/S1872-5813(21)60051-8
引用本文: 李志勤, 王英, 尹婵娟, 任枭雄, 邱泽刚. CoMoS/ZrO2催化4-甲基苯酚加氢脱氧中C−O键的选择性断裂[J]. 燃料化学学报(中英文), 2021, 49(4): 522-528. doi: 10.1016/S1872-5813(21)60051-8
LI Zhi-qin, WANG Ying, YIN Chan-juan, REN Xiao-xiong, QIU Ze-gang. Selective breaking of C−O bonds in hydrodeoxygenation of 4-methylphenol over CoMoS/ZrO2[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 522-528. doi: 10.1016/S1872-5813(21)60051-8
Citation: LI Zhi-qin, WANG Ying, YIN Chan-juan, REN Xiao-xiong, QIU Ze-gang. Selective breaking of C−O bonds in hydrodeoxygenation of 4-methylphenol over CoMoS/ZrO2[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 522-528. doi: 10.1016/S1872-5813(21)60051-8

CoMoS/ZrO2催化4-甲基苯酚加氢脱氧中C−O键的选择性断裂

doi: 10.1016/S1872-5813(21)60051-8
详细信息
  • 中图分类号: TQ032.41

Selective breaking of C−O bonds in hydrodeoxygenation of 4-methylphenol over CoMoS/ZrO2

Funds: The project was supported by the Chinese National Natural Science Foundation (21878243, 21908176, 22002120 and 21606177), Shaanxi Provincial Natural Science Basic Research Program (2019JM-085) and the Innovation and Practice Ability Training Project for Postgraduates of Xi’an Shiyou University (YCS19212060)
More Information
  • 摘要: 采用饱和浸渍法制备了不同Co-Mo原子比(0.25,0.30,0.35,0.40,0.45)和Co-Mo负载量(2.35%,4.36%,7.48%和10.79%)的CoMoS/ZrO2催化剂。用X射线衍射(XRD)、程序升温还原(H2-TPR)、氮气吸附和X射线光电子能谱(XPS)对催化剂进行了表征。以4-甲基苯酚为模型化合物进行加氢脱氧反应。结果表明,当Co-Mo(Co/Co+Mo)原子比为0.30,Mo负载量为4.36%时,催化加氢活性最好,4-甲基苯酚的转化率可达99.86%,直接加氢脱氧产物甲苯的选择性达到87.85%,较高程度保持了芳环。CoMoO4的产生不利于甲苯的生成。Co-Mo和ZrO2之间需要适当的相互作用。
  • FIG. 616.  FIG. 616.

    FIG. 616. 

    Figure  1  Two reaction pathways in the HDO reaction of phenol

    Figure  2  Catalytic performance of CoMoS/ZrO2 catalysts with different Co-Mo atomic ratios for HDO of 4-methyl phenol (3 MPa, 300 ℃ and 8 h)

    Figure  3  Catalytic performance of CoMoS/ZrO2 catalysts with different Co-Mo loading amounts for HDO of 4-methyl phenol (3 MPa, 300 ℃ and 8 h)

    Figure  4  XRD patterns of catalysts with different Co-Mo atomic ratios

    (a): for CoMo/ZrO2; (b): for CoMoS/ZrO2

    Figure  5  XRD patterns of CoMo/ZrO2 catalysts with different Co-Mo loading amounts

    Figure  6  H2-TPR profiles of CoMo/ZrO2

    (a): catalysts with different Co-Mo atomic ratios; (b): catalysts with different Co-Mo loading

    Figure  7  XPS spectra of CoMo/ZrO2 catalysts with different Co-Mo atomic ratios

    Figure  8  XPS spectra of pre-sulfided CoMoS/ZrO2 catalysts with different Co-Mo atomic ratios

    Figure  9  XPS spectra of CoMoS/ZrO2 catalysts with different Co-Mo loading

    Table  1  CoMo/ZrO2 catalysts with different Co-Mo atomic ratios

    CatalystCobalt
    content w/%
    Molybdenum
    conten w/%
    Co-Mo atomic
    ratioCo/(Co+Mo)
    (mol ratio)
    C1.15M5.54-0.251.155.540.25
    C1.15M4.36-0.301.154.360.30
    C1.15M3.50-0.351.153.500.35
    C1.15M2.85-0.401.152.850.40
    C1.15M2.35-0.451.152.350.45
    下载: 导出CSV

    Table  2  CoMo/ZrO2 catalysts with different Co-Mo loading

    CatalystCobalt
    content w/%
    Molybdenum
    content w/%
    Co-Mo atomic
    ratioCo/(Co+Mo)
    (mol ratio)
    C0.62M2.37-0.300.622.370.30
    C1.15M4.36-0.301.154.360.30
    C1.97M7.47-0.301.977.470.30
    C2.84M10.79-0.302.8410.790.30
    下载: 导出CSV
  • [1] SAIDI M, SAMIMI F, KARIMIPOURFARD D. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy Environ Sci,2014,7:103−129. doi: 10.1039/C3EE43081B
    [2] FURIMSKY E. Catalytic hydrodeoxygenation[J]. Appl Catal A: Gen,2000,199(2):147−190. doi: 10.1016/S0926-860X(99)00555-4
    [3] SUN Z, BÁLINT FRIDRICH, SANTI A D. Bright side of lignin depolymerization: Toward new platform chemicals[J]. Chem Rev,2018,118(2):614−678. doi: 10.1021/acs.chemrev.7b00588
    [4] WEI T, FANG M, WANG H. Mild hydrotreatment of low temperature coal tar distillate: Product composition[J]. Chem Eng J,2014,236:529−537. doi: 10.1016/j.cej.2013.09.038
    [5] LECKEL D. Catalytic hydroprocessing of coal-derived gasification residues to fuel blending stocks: Eeffect of reaction variables and catalyst on hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization (HDS)[J]. Energy Fuels,2006,20(5):1761−1766. doi: 10.1021/ef060034d
    [6] WANG H, MALE J, WANG Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catal,2013,3(5):1047−1070. doi: 10.1021/cs400069z
    [7] KAN T, WANG H, HE H. Experimental study on two-stage catalytic hydroprocessing of middle-temperature coal tar to clean liquid fuels[J]. Fuel,2011,90(11):3404−3409. doi: 10.1016/j.fuel.2011.06.012
    [8] ISLAS C A, SUELVES I, CARTER J F. Pyrolysis-gas chromatography/mass spectrometry of fractions separated from a low-temperature coal tar: An attempt to develop a general method for characterising structures and compositions of heavy hydrocarbon liquids[J]. Rapid Commun Mass Spectrom,2002,16(8):774−84. doi: 10.1002/rcm.638
    [9] SHI Q, YAN Y, WU X. Identification of dihydroxy aromatic compounds in a low-temperature pyrolysis coal tar by gas chromatography-mass spectrometry (GC-MS) and fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS)[J]. Energy Fuels,2010,24(10):5533−5538. doi: 10.1021/ef1007352
    [10] SUN M, MA X X, YAO Q X. GC-MS and TG-FTIR study of petroleum ether extract and residue from low temperature coal tar[J]. Energy Fuels,2011,25(3):1140−1145. doi: 10.1021/ef101610z
    [11] SHI Q, PAN N, LONG H. Characterization of middle-temperature gasification coal tar. part 3: molecular composition of acidic compounds[J]. Energy Fuels,2013,27(1):108−117. doi: 10.1021/ef301431y
    [12] JONGERIUS A L, JASTRZEBSKI R, BRUIJNINCX P C A. CoMo sulfide-catalyzed hydrodeoxygenation of lignin model compounds: An extended reaction network for the conversion of monomeric and dimeric substrates[J]. J Catal,2012,285(1):315−323. doi: 10.1016/j.jcat.2011.10.006
    [13] ZHANG Z, YUE C, HU J. Fabrication of porous MoS2, with controllable morphology and specific surface area for hydrodeoxygenation[J]. Nano,2017,12(9):1750116. doi: 10.1142/S1793292017501168
    [14] LIU G, ROBERTSON A W, LI M J. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J]. Nat Chem,2017,9(8):810−816. doi: 10.1038/nchem.2740
    [15] SONG W, ZHOU S, HU S, LAI W, LIAN Y J, WANG J, YANG W, WANG M, WANG P, JIANG X. Surface engineering of CoMoS nanosulfide for hydrodeoxygenation of lignin-derived phenols to arenes[J]. ACS Catal,2019,9(1):259−268. doi: 10.1021/acscatal.8b03402
    [16] BUI V N, LAURENTI P, DELICHÈRE P. Hydrodeoxygenation of guaiacol: Part II: Support effect for CoMoS catalysts on HDO activity and selectivity[J]. Appl Catal B: Environ,2011,101(3/4):246−255. doi: 10.1016/j.apcatb.2010.10.031
    [17] ROMERO Y, RICHARD F, BRUNET S. Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Promoting effect and reaction mechanism[J]. Appl Catal B: Environ,2010,98(3/4):213−223. doi: 10.1016/j.apcatb.2010.05.031
    [18] RAHIMPOUR H, SAIDI M, ROSTAMI P. Experimental investigation on upgrading of lignin-derived bio-oils: Kinetic analysis of anisole conversion on sulfided CoMo/Al2O3 catalyst[J]. Int J Chem Kinet,2016,48(11):702−713. doi: 10.1002/kin.21026
    [19] AQSHA A, KATTA L, MAHINPEY N. Catalytic hydrodeoxygenation of guaiacol as lignin model component using Ni-Mo/TiO2 and Ni-V/TiO2 catalysts[J]. Catal Lett,2015,145:1351−1363. doi: 10.1007/s10562-015-1530-7
    [20] MORTENSEN P M, J GRUNWALDT J, P JENSEN P A, JENSEN A D. Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil[J]. ACS Catal,2013,3(8):1774−1785. doi: 10.1021/cs400266e
    [21] GUTIERREZ A, KAILA R K, HONKELA M L. Hydrodeoxygenation of guaiacol on noble metal catalysts[J]. Catal Today,2009,147(3/4):239−246. doi: 10.1016/j.cattod.2008.10.037
    [22] TELES C A, RABELO-NETO R C, JACOBS G. Hydrodeoxygenation of phenol over zirconia supported catalysts: The effect of metal type on reaction mechanism and catalyst deactivation[J]. ChemCatChem,2017,9(14).
    [23] DE SOUZA P M, RABELO-NETO R C, BORGES L E P, JACOBS G, DAVIS B H, GRAHAM U M, RESASCO D E NORONHA F B. Effect of zirconia morphology on hydrodeoxygenation of phenol over Pd/ZrO2[J]. ACS Catal,2015,5(12):7385−7398. doi: 10.1021/acscatal.5b01501
    [24] FERRARI M, DELMON B, GRANGE P. Influence of the active phase loading in carbon supported molybdenum-cobalt catalysts for hydrodeoxygenation reactions[J]. Microporous Mesoporous Mater,2002,56(3):279−290. doi: 10.1016/S1387-1811(02)00492-4
    [25] MAITY S K, FLORES G A, ANCHEYTA J. Effect of preparation methods and content of phosphorus on hydrotreating activity[J]. Catal Today,2008,130(2/4):374−381. doi: 10.1016/j.cattod.2007.10.100
    [26] YANG Y, GILBERT A, XU C. Hydrodeoxygenation of bio-crude in supercritical hexane with sulfided CoMo and CoMoP catalysts supported on MgO: A model compound study using phenol[J]. Appl Catal A: Gen,2009,360(2):242−249. doi: 10.1016/j.apcata.2009.03.027
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  154
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-19
  • 修回日期:  2020-12-26
  • 网络出版日期:  2021-03-12
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回