留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焦粉对低阶煤热解焦油气反应行为的影响研究

李挺 杜天宙 申岩峰 闫伦靖 孔娇 王美君 王建成 常丽萍 鲍卫仁

李挺, 杜天宙, 申岩峰, 闫伦靖, 孔娇, 王美君, 王建成, 常丽萍, 鲍卫仁. 焦粉对低阶煤热解焦油气反应行为的影响研究[J]. 燃料化学学报(中英文), 2021, 49(5): 626-633. doi: 10.1016/S1872-5813(21)60056-7
引用本文: 李挺, 杜天宙, 申岩峰, 闫伦靖, 孔娇, 王美君, 王建成, 常丽萍, 鲍卫仁. 焦粉对低阶煤热解焦油气反应行为的影响研究[J]. 燃料化学学报(中英文), 2021, 49(5): 626-633. doi: 10.1016/S1872-5813(21)60056-7
LI Ting, DU Tian-zhou, SHEN Yan-feng, YAN Lun-jing, KONG Jiao, WANG Mei-jun, WANG Jian-cheng, CHANG Li-ping, BAO Wei-ren. Effect of char powder on gaseous tar reaction during low-rank coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 626-633. doi: 10.1016/S1872-5813(21)60056-7
Citation: LI Ting, DU Tian-zhou, SHEN Yan-feng, YAN Lun-jing, KONG Jiao, WANG Mei-jun, WANG Jian-cheng, CHANG Li-ping, BAO Wei-ren. Effect of char powder on gaseous tar reaction during low-rank coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 626-633. doi: 10.1016/S1872-5813(21)60056-7

焦粉对低阶煤热解焦油气反应行为的影响研究

doi: 10.1016/S1872-5813(21)60056-7
基金项目: 国家重点研发计划(2016YFB0600302)和国家自然科学基金(22078224)资助
详细信息
    作者简介:

    李挺:15735161250@163.com

    通讯作者:

    Tel:0351-6010482,E-mail:wangmeijun@tyut.edu.cn

    lpchang@tyut.edu.cn

  • 中图分类号: TQ523.3

Effect of char powder on gaseous tar reaction during low-rank coal pyrolysis

Funds: The project was supported by National Key Research and Development Program of China (2016YFB0600302) and National Natural Science Foundation of China (22078224)
  • 摘要: 热解焦油气在输送管路或除尘设备中会发生一定程度的反应,进而影响热解产物的分布和组成,而其中夹带的焦粉粉尘会对焦油气反应产生影响。本研究利用两段流化床热解反应器,考察了不同反应温度下(400−500 ℃),焦粉对淖毛湖长焰煤热解焦油气反应的影响。结果表明,添加焦粉后,焦油气不仅发生热裂解和热缩聚反应,还会被焦粉作用发生催化裂解反应,焦油产率和沥青含量减小,热解气和积炭产率增加;随着反应温度的升高,焦油气热裂解和热缩聚反应加剧,反应后焦油气较为稳定,不易被焦粉催化,因此,焦粉对焦油产率、沥青含量及热解气产率的影响随温度升高逐渐减弱;而反应温度升高,焦油气催化裂解生成的自由基更容易发生缩聚反应,焦粉对积炭产率的影响变强。此外,焦粉的催化裂解作用使不同反应温度下焦油中杂环化合物含量下降;同时焦粉促进了热解水与焦油气反应,导致不同反应温度下焦油中脂肪烃、芳香烃含量下降,酚类和含氧化合物含量上升。
  • FIG. 653.  FIG. 653.

    FIG. 653.  FIG. 653.

    图  1  实验装置示意图

    Figure  1  Diagram of the two-stage fluidized bed reactor

    1:Nitrogen cylinder; 2: Mass flow controller; 3: Gas preheater; 4: Feeder; 5: Fluidized bed reactor; 6: Electric furnace; 7: Collection bottle; 8: Filter; 9: Gas analyzer

    图  2  焦粉的红外光谱 (a)和拉曼光谱 (b)谱图

    Figure  2  FT-IR (a) and Raman (b) spectra of char powder

    图  3  不同反应温度下焦粉对热解产物产率的影响

    Figure  3  Effect of char powder on yields of pyrolysis products at different reaction temperatures

    图  4  不同反应温度下焦粉对热解焦油馏分分布的影响

    Figure  4  Effect of char powder on the distribution of tar fraction at different reaction temperatures

    图  5  不同反应温度下焦粉对热解焦油组成的影响

    Figure  5  Effect of char powder on tar composition at different reaction temperatures

    表  1  煤样的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of Naomaohu coal

    Proximate analysis w/%Ultimate analysis wdaf/%
    MadAdVdaf CHNSO*
    19.55.850.1274.355.130.720.3119.49
    note: ad: air-dried basis; d: dry basis; daf: dry and ash-free basis; *: by difference
    下载: 导出CSV

    表  2  焦粉的工业分析和元素分析

    Table  2  Proximate and ultimate analyses of char powder

    Proximate analysis w/%Ultimate analysis wdaf/%
    AdVdafFCdaf CHNSO*
    9.3526.6973.3182.693.980.830.4212.08
    note: dry basis; daf: dry and ash-free basis; *: by difference
    下载: 导出CSV

    表  3  焦粉的灰成分分析

    Table  3  Ash composition of char powder

    Content w/%
    SiO2Al2O3Fe2O3CaOMgOTiO2SO3 K2ONa2OP2O
    13.689.8314.3743.641.520.242.670.141.260.01
    下载: 导出CSV
  • [1] 赵宁, 刘东, 郭中山, 周家顺, 龚鑫, 于冉, 王峰. 低阶烟煤热解过程中氯的迁移释放特性研究[J]. 燃料化学学报,2019,47(9):1032−1041. doi: 10.3969/j.issn.0253-2409.2019.09.002

    ZHAO Ning, LIU Dong, GUO Zhong-shan, ZHOU Jia-shun, GONG Xin, YU Ran, WANG Feng. Investigation on transferring and release characteristics of chlorine during pyrolysis of low rank coal[J]. J Fuel Chem Technol,2019,47(9):1032−1041. doi: 10.3969/j.issn.0253-2409.2019.09.002
    [2] 潘生杰, 陈建玉, 范飞, 李鹏飞. 低阶煤分质利用转化路线的现状分析及展望[J]. 洁净煤技术,2017,23(5):7−12.

    PAN Sheng-jie, CHEN Jian-yu, FAN Fei, LI Peng-fei. Present situation analysis and prospect of low rank coal quality-based utilization conversion route[J]. Clean Coal Technol,2017,23(5):7−12.
    [3] 陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报,2017,68(10):3693−3707.

    CHEN Zhao-hui, GAO Shi-qiu, XU Guang-wen. Analysis and control methods of coal pyrolysis process[J]. J Chem Ind Eng,2017,68(10):3693−3707.
    [4] 刘书贤, 门卓武, 郭屹, 陈爱国, 王向辉, 陈微, 翁力. 块煤热解提质工艺及反应器开发进展[J]. 洁净煤技术,2015,21(4):70−76.

    LIU Shu-xian, MEN Zhuo-wu, GUO Yi, CHEN Ai-guo, WANG Xiang-hui, CHEN Wei, WENG Li. Status and development of lump coal pyrolysis and reactor design technologies[J]. Clean Coal Technol,2015,21(4):70−76.
    [5] 杜鑫, 黄茂丽, 齐彬彬, 李云. 粉煤热解含尘干馏气两级净化实验研究[J]. 煤炭学报,2018,43(10):255−261.

    DU Xin, HUANG Mao-li, QI Bin-bin, LI Yun. Experimental study on the two-stage purification of retorting gas in the process of pulverized coal pyrolysis[J]. J China Coal Soc,2018,43(10):255−261.
    [6] CHEN Q L, FANG M X, CEN J M, LU M L, SHAO S T, XIA Z X. Comparison of positive and negative DC discharge under coal pyrolysis gas media at high temperatures[J]. Powder Technol,2019,345:352−362. doi: 10.1016/j.powtec.2019.01.004
    [7] 陈昭睿, 王勤辉, 郭志航, 贾鑫, 方梦祥, 骆仲泱. 热解气停留时间对典型烟煤热解产物的影响[J]. 热能动力工程,2015,30(5):756−761.

    CHEN Zhao-rui, WANG Qin-hui, GUO Zhi-hang, JIA Xin, FANG Meng-xiang, LUO Zhong-yang. Influence of the residence time of gases pyrolyzed on the pyrolytic products of typical bituminous coal[J]. J Eng Therm Energy Power,2015,30(5):756−761.
    [8] XU W C, AKIRA T. The effects of temperature and residence time on the secondary reactions of volatiles from coal pyrolysis[J]. Fuel Process Technol,1989,21(1):25−37. doi: 10.1016/0378-3820(89)90012-X
    [9] ZHOU Q Q, LIU Q Y, SHI L, YAN Y X, WU J F, XIANG C, WANG T, LIU Z Y. Effect of volatiles’ reaction on composition of tars derived from pyrolysis of a lignite and a bituminous coal[J]. Fuel,2019,242:140−148. doi: 10.1016/j.fuel.2019.01.005
    [10] 敦启孟, 陈兆辉, 皇甫林, 周杨, 余剑, 高士秋, 刘鸿雁. 温度和停留时间对煤热解挥发分二次反应的影响[J]. 过程工程学报,2018,18(1):140−147. doi: 10.12034/j.issn.1009-606X.217192

    DUN Qi-meng, CHEN Zhao-hui, HUANG Fu-lin, ZHOU Yang, YU Jian, GAO Shi-qiu, LIU Hong-yan. Influences of temperature and residence time on secondary reactions of volatiles from coal pyrolysis[J]. Chin J Process Eng,2018,18(1):140−147. doi: 10.12034/j.issn.1009-606X.217192
    [11] 刘殊远, 汪印, 武荣成, 曾玺, 许光文. 热态半焦和冷态半焦催化裂解煤焦油研究[J]. 燃料化学学报, 2013, 41(9): 1041−1049.

    LIU Shu-yuan, WANG Yin, WU Rong-chen, ZENG Xi, XU Guang-wen. Research on coal tar catalytic cracking over hot in situ chars[J]. 2013, 41(9): 1041−1049.
    [12] JIN L J, BAI X Y, LI Y, DONG C, LI X. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Process Technol,2016,147:41−46. doi: 10.1016/j.fuproc.2015.12.028
    [13] 韩江则, 刘少杰, 申淑锋. 半焦催化裂解原位煤热解焦油的研究[J]. 现代化工,2017,37(2):62−65.

    HAN Jiang-ze, LIU Shao-jie, SHEN Shu-feng. Catalytic cracking of in situ coal pyrolysis tar over char catalyst[J]. Mod Chem Ind,2017,37(2):62−65.
    [14] 王兴栋, 韩江则, 陆江银, 陆江银, 高士秋, 许光文. 半焦基催化剂裂解煤热解产物 提高油气品质[J]. 化工学报,2013,63(12):3897−3905.

    WANG Xing-don, HAN Jiang-ze, LU Jiang-yin, GAO Shi qiu, XU Guan-gwen. Catalytic cracking of coal pyrolysis product for oil and gas upgrading over char-based catalysts[J]. J Chem Ind Eng,2013,63(12):3897−3905.
    [15] FU D Q, LI X H, LI W Y, FENG J. Catalytic upgrading of coal pyrolysis products over bio-char[J]. Fuel Process Technol,2018,176:240−248. doi: 10.1016/j.fuproc.2018.04.001
    [16] WANG F J , ZHANG S , CHEN Z D , LIU C,WANG Y G. Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal[J]. J Anal Appl Pyrolysis,2014,105:269−275.
    [17] ZHANG S, CHEN Z D, ZHANG H Y, WANG Y G, XU X Q, CHENG L, ZHANG Y M. The catalytic reforming of tar from pyrolysis and gasification of brown coal: Effects of parental carbon materials on the performance of char catalysts[J]. Fuel Process Technol,2018,174:142−148. doi: 10.1016/j.fuproc.2018.02.022
    [18] HAN J Z, WANG X D, YUE J R, XI B F, GAO S Q, XU G W. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Process Technol,2014,122:4934−4941.
    [19] XU W C, TOMITA A. Effect of metal oxides on the secondary reactions of volatiles from coal[J]. Fuel,1989,68(5):673−676. doi: 10.1016/0016-2361(89)90173-7
    [20] FURUTANI Y, KUDO S, HAYASHI J I, NORINAGA K. Predicting molecular composition of primary product derived from fast pyrolysis of lignin with semi-detailed kinetic model[J]. Fuel,2018,212:515−522. doi: 10.1016/j.fuel.2017.10.079
    [21] PÜTÜN A E, APAYDIN E, PETÉN E. Rice straw as a bio-oil source via pyrolysis and steam pyrolysis[J]. Energy,2004,29(12-15):2171−2180. doi: 10.1016/j.energy.2004.03.020
    [22] 郭林丹. 水蒸气对煤与生物质共热解的影响[D]. 大连: 大连理工大学, 2013.

    GUO Lin-dan. Influence of steam on co-pyrolysis of coal and biomass[D]. Dalian: Dalian University of Technology, 2013.
    [23] WU J F, LIU QY, WANG R X, HE W J, SHI L, GUO X J, CHEN Z Z, JI L M. Coke formation during during thermal reaction of tar from pyrolysis of a subbituminous coal[J]. Fuel Process Technol,2017,155:68−73. doi: 10.1016/j.fuproc.2016.03.022
    [24] DONG L, HANS, YU W H, LEI Z P, KANG S G, ZHANG K, YANG J C, LI Z K, SHUI H F, WANG Z C, REN S B, PAN C X. Effect of volatile reactions on the yield and quality of tar from pyrolysis of Shenhua bituminous coal[J]. J. Anal Appl Pyrolysis,2019,140:321−330. doi: 10.1016/j.jaap.2019.04.009
    [25] FIDALGO B, NIEKERK D V, MILLAN M. The effect of syngas on tar quality and quantity in pyrolysis of a typical south african inertinite-rich coal[J]. Fuel,2014,134:90−96. doi: 10.1016/j.fuel.2014.05.032
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  105
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-02-10
  • 网络出版日期:  2021-03-08
  • 刊出日期:  2021-05-28

目录

    /

    返回文章
    返回