留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

淖毛湖煤加氢液化过程杂原子迁移转化研究

林雄超 殷甲楠 丁雄文 王永刚 徐振刚

林雄超, 殷甲楠, 丁雄文, 王永刚, 徐振刚. 淖毛湖煤加氢液化过程杂原子迁移转化研究[J]. 燃料化学学报(中英文), 2021, 49(5): 656-663. doi: 10.1016/S1872-5813(21)60059-2
引用本文: 林雄超, 殷甲楠, 丁雄文, 王永刚, 徐振刚. 淖毛湖煤加氢液化过程杂原子迁移转化研究[J]. 燃料化学学报(中英文), 2021, 49(5): 656-663. doi: 10.1016/S1872-5813(21)60059-2
LIN Xiong-chao, YIN Jia-nan, DING Xiong-wen, WANG Yong-gang, XU Zhen-gang. Study on the transformation characteristic of heteroatoms during liquefaction of Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 656-663. doi: 10.1016/S1872-5813(21)60059-2
Citation: LIN Xiong-chao, YIN Jia-nan, DING Xiong-wen, WANG Yong-gang, XU Zhen-gang. Study on the transformation characteristic of heteroatoms during liquefaction of Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 656-663. doi: 10.1016/S1872-5813(21)60059-2

淖毛湖煤加氢液化过程杂原子迁移转化研究

doi: 10.1016/S1872-5813(21)60059-2
基金项目: 国家重点研发计划项目(2016YFB060030303)资助
详细信息
    通讯作者:

    E-mail:linxiongchao@163.com

  • 中图分类号: TQ529.1

Study on the transformation characteristic of heteroatoms during liquefaction of Naomaohu coal

Funds: The project was supported by the National Key Research and Development Program (2016YFB060030303)
  • 摘要: 以淖毛湖煤为原料,进行加氢直接液化,考察了加氢温度与转化率和油收率的关系,并解析了加氢条件下煤中硫、氮和氧的迁移转化特性。结果表明,淖毛湖煤具有良好的液化性能,400 ℃和2 MPa氢初压条件下即可达到69.6%的转化率和55.3%的油产率。结合气相色谱质谱联用(GC-MS)和气相色谱-原子发射光谱 (GC-AED)等方法对产物分析发现,以弱键合结构存在的硫、氮和氧等杂原子易发生加氢裂解生成H2S、NH3、H2O等。液化油品中含硫化合物主要以噻吩及噻吩同系物为主;含氮化合物含量极低,主要由含氮杂环化合物构成;含氧化合物在液化油中主要以酚及酚的同系物为主。存在于芳香结构中的杂原子会随着自由基缩合反应,生成更稳定的含杂原子稠环化合物富集在液化残渣中。
  • FIG. 657.  FIG. 657.

    FIG. 657.  FIG. 657.

    图  1  淖毛湖煤直接液化反应特性(a),温度对直接液化的影响(b),温度对气产率及氢耗的影响

    Figure  1  Direct liquefaction characteristics of Naomaohu coal, (a) effect of temperature on the reactivity, (b) effect of temperature on gas production rate and hydrogen consumption

    图  2  直接液化过程气体产物的组成

    Figure  2  Compositions of gaseous products of coal direct liquefaction

    图  3  液化前后固体样品官能团的变化

    Figure  3  Variation of functional groups before and after liquefaction

    图  4  液化过程固体样品中元素的组成

    Figure  4  Variation of elemental composition in solid samples

    图  5  GC-AED对液化油品分析(a),含碳化合物分析(C193 nm),(b)含硫物质分析(S181 nm),(c)含氮物质分析(N174 nm)

    Figure  5  GC-AED analysis of liquefied oil (a) hydrocarbons (C193 nm), (b) sulfur-containing compounds (S181 nm), (c) nitrogen-containing compounds (N174 nm)

    图  6  温度对直接液化油品组成的影响

    Figure  6  Influence of temperature on the composition of coal direct liquefied oil

    图  7  直接液化过程杂原子化合物转化机理

    Figure  7  Mechanism on the transformation characteristics of heteroatoms during the direct liquefaction process

    表  1  淖毛湖煤的煤质分析

    Table  1  Proximate and ultimate analyses of Naomaohu coal

    Proximate analysis w/% Ultimate analysis wdaf/%
    MadVdafAdFCdaf CHNStO*
    7.0252.415.4147.59 77.036.011.010.3915.56
    note:ad: air dried base;d: dry base;daf: dry and ash-free base;*: by different
    下载: 导出CSV

    表  2  液化产物的组成

    Table  2  Component distribution of liquefied oil

    ItemsCompoundsContent /%
    350 ℃400 ℃450 ℃
    Chain hydrocarbonalkane(C7−C32 alkane, olefins)1.911.292.69
    tetrahydronaphthalene27.3129.0918.32
    Aromatic hydrocarbons and their homologuesbenzene and its homologues0.150.852.68
    naphthalene16.1546.4145.95
    C1−C3 substituted naphthalene0.604.647.74
    indene and its homologues0.101.855.67
    diphenyl and its homologues0.000.200.42
    anthracene and phenanthrene homologues0.010.070.81
    pyrene0.000.222.24
    anthracene and pyrene homologues0.012.051.98
    total17.0259.2967.49
    S-containing compoundquinoline and others0.100.120.20
    N-containing compoundthiophene and its homologues0.210.120.23
    benzothiophene and its homologues0.240.230.15
    total0.450.350.38
    O-containing compoundphenol0.000.100.16
    C1−C4 substituted phenol0.050.651.57
    naphthol0.000.010.04
    others0.750.490.20
    total0.801.251.97
    下载: 导出CSV
  • [1] 方正美, 吕海燕, 张媛媛, 宁奕飞, 潘铁英, 张德祥. 溶剂特性对淖毛湖煤加氢液化中间产物反应行为的影响[J]. 燃料化学学报,2019,47(8):907−914. doi: 10.3969/j.issn.0253-2409.2019.08.002

    FANG Zheng-mei, LÜ Hai-yan, ZHANG Yuan-yuan, NING Yi-fei, PAN Tie-ying, ZHANG De-xiang. Effect of solvent characteristics on reaction behavior of hydroliquefaction intermediate products from Naomaohu coal[J]. J Fuel Chem Technol,2019,47(8):907−914. doi: 10.3969/j.issn.0253-2409.2019.08.002
    [2] MOCHIDA I, OSAMO O, YOON S H. Chemicals from direct coal liquefaction[J]. Chem Rev,2013,114(3):1637−1672.
    [3] HOU R R, BAI Z Q, ZHENG H Y, FENG Z H, YE D H, GUO Z X, KONG L X, BAI J, LI W. Behaviors of hydrogen bonds formed by lignite and aromatic solvents in direct coal liquefaction: Combination analysis of density functional theory and experimental methods[J]. Fuel,2020,265:117011. doi: 10.1016/j.fuel.2020.117011
    [4] HAO P, BAI Z Q, HOU R R, XU J L, BAI J, GUO Z X, KONG L X, LI W. Effect of solvent and atmosphere on product distribution, hydrogen consumption and coal structural change during preheating stage in direct coal liquefaction[J]. Fuel,2018,211:783−788. doi: 10.1016/j.fuel.2017.09.122
    [5] ALI A, ZHAO C. Direct liquefaction techniques on lignite coal: A review[J]. Chin J Catal,2020,41(3):375−389. doi: 10.1016/S1872-2067(19)63492-3
    [6] LIN X C, YANG S S, CHEN X J, ZHENG P P, WANG Y G, ZHANG S. Effects of calcium on the evolution of nitrogen during pyrolysis of a typical low rank coal[J]. Int J Coal Sci Technol,2020,7:397−404. doi: 10.1007/s40789-019-00290-3
    [7] KULAKOVA V, BUTUZOVA L, ANDRADE J M, SHEVKOPLYAS V, TURCHANINA O. Characterization of sulfur coal-derived liquids as a source of hydrocarbons to produce chemicals and synthetic fuels[J]. Fuel,2016,184:314−324. doi: 10.1016/j.fuel.2016.07.005
    [8] WANG Z C, GE Y, SHUI H F, REN S B, PAN C X, KANG S G, LEI Z P, ZHAO Z J, HU J C. Molecular structure and size of asphaltene and preasphaltene from direct coal liquefaction[J]. Fuel Process Technol,2015,137:305−311. doi: 10.1016/j.fuproc.2015.03.015
    [9] FENG J, XUE X Y, LI X H, LI W Y, GUO X F, LIU K. Products analysis of Shendong long-flame coal hydropyrolysis with iron-based catalysts[J]. Fuel Process Technol,2015,130:96−100. doi: 10.1016/j.fuproc.2014.09.035
    [10] XU B, LU W Y, SUN Z, HE T, GORONCY A, ZHANG Y L, FAN M H. High-quality oil and gas from pyrolysis of Powder River Basin coal catalyzed by an environmentally-friendly, inexpensive composite iron-sodium catalysts[J]. Fuel Process Technol,2017,167:334−344. doi: 10.1016/j.fuproc.2017.05.028
    [11] LI X, HU S X, JIN L J, HU H Q. Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction[J]. Energy Fuels,2008,22(2):1126−1129. doi: 10.1021/ef7006062
    [12] MARKO R D, NENAD D R, NATALIA O, GUY B M, KEVIN M V G. Quantitative on-line analysis of sulfur compounds in complex hydrocarbon matrices[J]. J Chromatogr A,2017,1509:102−113. doi: 10.1016/j.chroma.2017.06.006
    [13] WANG Z C, XUE W T, ZHU J, CHEN E S, PAN C X, KANG S G, LEI Z P, REN S B, SHUI H F. Study on the stability of hydro-liquefaction residue of Shenfu sub-bituminous coal[J]. Fuel,2016,181:711−717. doi: 10.1016/j.fuel.2016.05.042
    [14] CHEN Z Z, XIE J, LIU Q Y, WANG H X, GAO S S, SHI L, LIU Z Y. Characterization of direct coal liquefaction catalysts by their sulfidation behavior and tetralin dehydrogenation activity[J]. J Energy Inst,2019,92:1213−1222. doi: 10.1016/j.joei.2018.05.009
    [15] KHAN M, AHMAD I, ISHAQ M, SHAKIRULLAH M, JAN M T, REHMAN E U, BAHADER A. Spectral characterization of liquefied products of Pakistani coal[J]. Fuel Process Technol,2003,85(1):63−74.
    [16] 黄澎, 张晓静, 毛学锋, 李伟林. 神府煤液化油加氢精制过程中硫氮化合物分布的变化[J]. 燃料化学学报,2016,44(1):37−43. doi: 10.3969/j.issn.0253-2409.2016.01.006

    HUANG Peng, ZHANG Xiao-jing, MAO Xue-feng, LI Wei-lin. Change of sulfur and nitrogen compounds in the direct liquefaction oil from Shenfu coal upon the hydrofining process[J]. J Fuel Chem Technol,2016,44(1):37−43. doi: 10.3969/j.issn.0253-2409.2016.01.006
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  120
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-01-21
  • 网络出版日期:  2021-03-09
  • 刊出日期:  2021-05-28

目录

    /

    返回文章
    返回