留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用原位热解光电离飞行时间质谱研究Fe2O3对两种脱矿煤热解规律的影响

张学慧 朱家龙 班延鹏 刘方刚 靳立军 胡浩权

张学慧, 朱家龙, 班延鹏, 刘方刚, 靳立军, 胡浩权. 利用原位热解光电离飞行时间质谱研究Fe2O3对两种脱矿煤热解规律的影响[J]. 燃料化学学报(中英文), 2021, 49(5): 589-597. doi: 10.1016/S1872-5813(21)60065-8
引用本文: 张学慧, 朱家龙, 班延鹏, 刘方刚, 靳立军, 胡浩权. 利用原位热解光电离飞行时间质谱研究Fe2O3对两种脱矿煤热解规律的影响[J]. 燃料化学学报(中英文), 2021, 49(5): 589-597. doi: 10.1016/S1872-5813(21)60065-8
ZHANG Xue-hui, ZHU Jia-long, BAN Yan-peng, LIU Fang-gang, JIN Li-jun, HU Hao-quan. Effect of Fe2O3 on the pyrolysis of two demineralized coal using in-situ pyrolysis photoionization time-of-flight mass spectrometry[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 589-597. doi: 10.1016/S1872-5813(21)60065-8
Citation: ZHANG Xue-hui, ZHU Jia-long, BAN Yan-peng, LIU Fang-gang, JIN Li-jun, HU Hao-quan. Effect of Fe2O3 on the pyrolysis of two demineralized coal using in-situ pyrolysis photoionization time-of-flight mass spectrometry[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 589-597. doi: 10.1016/S1872-5813(21)60065-8

利用原位热解光电离飞行时间质谱研究Fe2O3对两种脱矿煤热解规律的影响

doi: 10.1016/S1872-5813(21)60065-8
基金项目: 国家重点研发计划(2016YFB0600301)和中央高校基本科研业务费(DUT2018TB02)资助
详细信息
    通讯作者:

    Tel: 0411-84986157, E-mail: hhu@dlut.edu.cn

  • 中图分类号: TQ530.2

Effect of Fe2O3 on the pyrolysis of two demineralized coal using in-situ pyrolysis photoionization time-of-flight mass spectrometry

Funds: The project was supported by National Key R & D Program of China (2016YFB0600301) and The Fundamental Research Funds for the Central Universities (DUT2018TB02)
  • 摘要: 利用原位热解真空紫外单光子电离飞行时间质谱系统研究了Fe2O3对脱矿红沙泉和大柳塔煤热解产物分布的影响。实验所用样品是经酸洗脱矿物质后的煤与Fe2O3以10∶1、5∶1和2∶1的质量比机械混合得到。在该热解检测系统中,由于原位捕捉、软电离和高真空环境的特点可以检测到热解初始挥发产物,主要包括烯烃、芳烃、单酚、双酚及少量含硫和含氮物质。结果表明,Fe2O3对两种脱矿煤的热解产物分布具有相似的影响规律,但对脱矿大柳塔煤的影响较为明显。随着Fe2O3添加量的增加,产物中烯烃、芳烃等轻质组分含量增加,双酚类的含量明显降低,重质产物的含量也有所降低,但产物的逸出峰值温度提高。Fe2O3在使重组分向轻质组分转变的同时,自身被还原成FeO并进一步还原成Fe。煤热解过程中形成产物的脂碳(或芳烃取代碳)愈多,其产生的峰值温度愈低。
  • FIG. 649.  FIG. 649.

    FIG. 649.  FIG. 649.

    图  1  原位热解光电离飞行时间质谱装置示意图[12]

    Figure  1  Schematic diagram of Py-VUVPI-TOF-MS[12]

    图  2  混合煤样的TG和DTG曲线

    Figure  2  TG and DTG curves of coal samples

    (a): TG-HSQDM; (b): DTG-HSQDM; (c): TG-DLTDM; (d): DTG-DLTDM

    图  3  红沙泉混合煤样的PI-MS谱图

    Figure  3  Mass spectra of main pyrolysis products from HSQDM coal samples

    (a): HSQDM; (b): HSQDM∶Fe2O3 = 10∶1; (c): HSQDM∶Fe2O3 = 5∶1; (d): HSQDM∶Fe2O3 = 2∶1

    图  4  红沙泉混合煤样的DTG (a)和TIC (b)谱图

    Figure  4  DTG (a) and TIC (b) curves of HSQDM coal samples

    图  5  主要热解产物逸出特征曲线图:(a) 烯烃(m/z = 28、42、56、70和84); (b) 芳烃(m/z = 78、92、106、120和134); (c) 单酚(m/z = 94、108、122和134); (d) 双酚(m/z = 110、124和138)

    Figure  5  Evolved profiles of main products from HSQDM pyrolysis: (a) alkenes; (b) aromatic hydrocarbons; (c) phenols; (d) diphenols

    图  6  Fe2O3对热解产物峰值温度与取代基碳数间关系的影响

    Figure  6  Effect of Fe2O3 on the relationship between peak temperature and substituent carbon number of pyrolysis products

    图  7  不同Fe2O3添加的红沙泉混合煤样主要热解产物的相对含量图

    Figure  7  Relative content of main pyrolysis products from HSQDM pyrolysis with different Fe2O3 mixing ratios

    图  8  添加Fe2O3前后大柳塔脱矿煤的主要热解产物:(a) DLTDM及DLTDM:Fe2O3 = 5∶1的主要热解产物的相对含量;(b) 热解产物分类汇总和重质产物相对含量

    Figure  8  Relative content of main pyrolysis products of DLTDM coal samples with and without addition of Fe2O3: (a) relative content of main pyrolysis products; (b) different types of pyrolysis products and relative content of heavy products

    图  9  混合煤样反应前后的XRD谱图

    Figure  9  XRD patterns of mixed coal samples before and after reaction

    表  1  大柳塔、红沙泉原煤及其脱矿煤的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of coal samples

    Coal sampleProximate analysis w/%Ultimate analysis wdaf/% H/C
    MadAdVdafCHNSO*
    DLT1.4313.9334.0678.324.751.090.6215.220.73
    DLTDM1.130.3032.0978.624.670.990.4515.270.71
    HSQ3.157.6035.4376.304.851.080.1217.650.76
    HSQDM1.960.1137.5976.564.721.060.0817.580.74
    *: by difference
    下载: 导出CSV

    表  2  大柳塔和红沙泉原煤的灰成分分析

    Table  2  XRF analyses of DLT and HSQ coal ashes

    SampleContent w/%
    Fe2O3SiO2Al2O3Na2OCaOK2OSO3MgOother*
    DLT7.8252.5617.221.0211.581.476.290.691.35
    HSQ14.8343.4419.703.348.470.473.924.001.83
    *: by difference
    下载: 导出CSV

    表  3  煤原位热解光电离飞行时间质谱检测主要热解产物归属

    Table  3  Mass attribution of main pyrolysis products of coal via in-situ Py-VUVPI-TOF MS

    m/z Name Formula Formula IE/eVa
    28 ethylene C2H4 10.51
    42 propylene C3H6 9.73
    56 butene/methylcyclopropane C4H8 9.10/9.30
    70 pentene/ethylcyclopropane C5H10 9.04/8.96
    78 benzene C6H6 9.244
    84 cyclohexane/hexene C6H12 9.88/8.97
    92 toluene C7H8 8.828
    94 phenol C6H6O 8.49
    106 dimethylbenzene/ethylbenzene C8H10 8.44/8.77
    108 methylphenol/anisole C7H8O 8.29/8.20
    110 benzenediol C6H6O2 7.94
    120 trimethylbenzene C9H12 8.4
    124 guaiacol/methylbenzenediol C7H8O2
    134 tetramethylbenzene C10H14 8.06/8.29
    136 2,4,6-trimethyl phenol C9H12O 8.00
    138 ethoxyphenol/dimethoxybenzene C8H10O2 8.49/7.80
    142 methylnaphthalene C11H10 7.96
    144 naphthalenol C10H8O 7.89
    146 coumarin C9H6O2 8.72
    156 dimethylnaphthalene C12H12 8.11
    158 methoxynaphthalene/methylnaphthalenol C11H10O 7.82/7.72
    160 1,8-naphthalenediol C10H8O2 7.62
    170 trimethylnaphthalene C13H14
    174 methylnaphthalenediol C11H10O2
    178 phenanthrene/anthracene C14H10 7.44/7.89
    a: IE values with reference to NIST Chemistry Web Book[15]
    下载: 导出CSV
  • [1] 2020中国统计年鉴[M]. 北京: 中华人民共和国国家统计局, 2020.

    2020 China Statistical Yearbook[M]. Beijing: National Bureau of Statistics of People's Republic of China, 2020.
    [2] 郭富强, 丁建伟, 刘昆仑, 俞乔. 煤炭清洁高效利用发展现状及趋势展望[J]. 煤炭加工与综合利用,2019,12:55−60.

    GUO Fu-qiang, DING Jian-wei, LIU Kun-lun, YU Qiao. Current development situation and tendency prospect for coal clean and efficient utilization[J]. Coal Process Compr Util,2019,12:55−60.
    [3] WANG P, JIN L, LIU J, ZHU S, HU H. Isotope analysis for understanding the tar formation in the integrated process of coal pyrolysis with CO2 reforming of methane[J]. Energy Fuels,2010,24(8):4402−4407. doi: 10.1021/ef100637k
    [4] 刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学,2014,44(9):1431−1438.

    LIU Zhen-yu. Advancement in coal chemistry: Structure and reactivity[J]. Sci China Ser B,2014,44(9):1431−1438.
    [5] 2016中国矿产资源报告[M]. 北京: 中华人民共和国国土资源部, 2016.

    2016 China Mineral Resources[M]. Beijing: Ministry of Land and Resources, P. R. C.
    [6] KATALAMBULA H, GUPTA R. Low-grade coals: A review of some prospective upgrading technologies[J]. Energy Fuels,2009,23(7):3392−3405. doi: 10.1021/ef801140t
    [7] 汪亚斌, 胡金余, 李增勃, 李文选. 煤热解技术研究进展[J]. 炼油与化工,2020,4:8−11.

    WANG Ya-bin, HU Jin-yu, LI Zeng-bo, LI Wen-xuan. Research progress of coal pyrolysis technology[J]. Ref Chem Ind,2020,4:8−11.
    [8] 朱廷钰, 王洋. 氧化铁与碳酸钾对煤温和气化的影响[J]. 化学反应工程与工艺,2000,16(2):203−207.

    ZHU Ting-yu, WANG Yang. Effect of Fe2O3-K2CO3 on coal mild gasification[J]. Chem React Eng Technol,2000,16(2):203−207.
    [9] CHO W, KIM S, CHO H K. Characterization of made of solvent extracted coals[J]. Korean J Chem Eng,2012,29(2):190−195. doi: 10.1007/s11814-011-0160-z
    [10] 贺璐. 煤热解与铁矿石还原耦合工艺的基础研究[D]. 北京: 中国科学院过程工程研究所, 2018.

    HE Lu. Fundamentals on integration of coal pyrolysis with iron ore reduction process[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2018.
    [11] 梁虎珍, 王传格, 曾凡桂, 李美芬, 相建华. 应用红外光谱研究脱灰对伊敏褐煤结构的影响[J]. 燃料化学学报,2014,42(2):129−137.

    LIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui, LI Mei-fen, XIANG Jian-hua. Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation[J]. J Fuel Chem Technol,2014,42(2):129−137.
    [12] ZHOU Y, LI G, JIN L J, ZHOU J, WANG J F, LI Y, HU H Q. In situ analysis of catalytic effect of calcium nitrate on shenmu coal pyrolysis with pyrolysis vacuum ultraviolet photoionization mass spectrometry[J]. Energy Fuels,2018,32:1061−1069. doi: 10.1021/acs.energyfuels.7b02385
    [13] YANG Z, ZHANG T, PAN Y, HONG X, TANG Z, QI F. Electrospray/VUV single-photonioniza tion mass spectrometry for the analysis of organic compounds[J]. J Am Soc Mass Spectr,2009,20(3):430−434. doi: 10.1016/j.jasms.2008.10.026
    [14] ZHOU L, ENAKONDA R L, HARB M, SARH Y, AGUILAR-TAPIA A, OULD-CHIKH S, HAZEMANN J-L, LI J, WEI N N, GARY D, DEL-GALLO P, BASSET J-M. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials[J]. Appl Catal B: Environ,2017,208:44−59. doi: 10.1016/j.apcatb.2017.02.052
    [15] LINSTROM P J. NIST Chemistry Webbook[M]. https://webbook.nist.gov/chemistry/. 2018.
    [16] NORDGREEN T, LILIEDAHL T, SJOSTROM K. Metallic iron as a tar breakdown catalyst related to atmospheric, fluidised bed gasification of biomass[J]. Fuel,2006,85:689−694. doi: 10.1016/j.fuel.2005.08.026
    [17] HE L, LI S, LIN W. Catalytic cracking of pyrolytic vapors of low-rank coal over limonite ore[J]. Energy Fuels,2016,30:6984−6990. doi: 10.1021/acs.energyfuels.6b01182
    [18] LI X, HUI H L, LI S G, HE L, CUI L J. Integration of coal pyrolysis process with iron ore reduction: Reduction behaviors of iron ore with benzene-containing coal pyrolysis gas as a reducing agent[J]. Chin J Chem Eng,2016,24(6):811−817. doi: 10.1016/j.cjche.2015.12.020
    [19] 王美君, 杨会民, 何秀风, 常丽萍. 铁基矿物质对西部煤热解特性的影响[J]. 中国矿业大学学报,2010,39(3):426−430.

    WANG Mei-jun, YANG Hui-min, HE Xiu-feng, CHANG Li-ping. Effect of Fe-based minerals on pyrolysis characteristics of coal from western China[J]. J China Univ Min Technol,2010,39(3):426−430.
    [20] 王德超. 铁基氧化物催化重油部分氧化提质及过程耦合研究[D]. 大连: 大连理工大学, 2020.

    WANG De-chao. Upgrading of heavy oil with partial oxidation and process coupling over iron-based oxides[D]. Dalian: Dalian University of Technology, 2020.
    [21] HE L, HUI H L, LI S G, LIN W G. Production of light aromatic hydrocarbons by catalytic cracking of coal pyrolysis vapors over natural iron ores[J]. Fuel,2018,216:227−232. doi: 10.1016/j.fuel.2017.12.005
    [22] 宋强, 赵洪宇, 王雪强, 顾秋香, 梁新星, 舒新前. 赤铁矿对2种低阶煤热解特性影响[J]. 西安科技大学学报,2017,37(2):260−266.

    SONG Qiang, ZHAO Hong-yu, WANG Xue-qiang, GU Qiu-xiang, LIANG Xin-xing, SHU Xin-qian. Effect of hematite on pyrolysis characteristics of two low-rank coal[J]. J Xi'an Univ Sci Technol,2017,37(2):260−266.
    [23] WANG D C, JIN L J, LI Y, WEI B Y, YAO D M, WANG T T, HU H Q. Integrated process of coal tar upgrading and in-situ reduction of Fe2O3[J]. Fuel Process Technol,2019,191:20−28. doi: 10.1016/j.fuproc.2019.03.024
    [24] QIU S X, ZHANG S F, SUO G S, QIU Z B, YIN C, LI Y, HU M L, XIAO X, WEN L Y. Effects of Fe2O3 addition on the thermoplasticity and structure of coking coal matrix during thermoplastic stage of pyrolysis[J]. Fuel,2020,260:116305. doi: 10.1016/j.fuel.2019.116305
    [25] 许莹, 孙小星, 胡宾生. 催化剂对混合煤在快速热解过程中的影响[J]. 化学工程,2007,35(4):65−67,71.

    XU Ying, SUN Xiao-xing, HU Bin-sheng. Effect of combustion catalysts on mixed-coal rapid pyrolysis[J]. Chem Eng (China),2007,35(4):65−67,71.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  120
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-02-13
  • 网络出版日期:  2021-03-16
  • 刊出日期:  2021-05-28

目录

    /

    返回文章
    返回