留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnOHF纳米棒用于电催化二氧化碳还原制一氧化碳

王栋 钟达忠 郝根彦 李晋平 赵强

王栋, 钟达忠, 郝根彦, 李晋平, 赵强. ZnOHF纳米棒用于电催化二氧化碳还原制一氧化碳[J]. 燃料化学学报(中英文), 2021, 49(9): 1379-1388. doi: 10.1016/S1872-5813(21)60082-8
引用本文: 王栋, 钟达忠, 郝根彦, 李晋平, 赵强. ZnOHF纳米棒用于电催化二氧化碳还原制一氧化碳[J]. 燃料化学学报(中英文), 2021, 49(9): 1379-1388. doi: 10.1016/S1872-5813(21)60082-8
WANG Dong, ZHONG Da-zhong, HAO Gen-yan, LI Jin-ping, ZHAO Qiang. ZnOHF nanorods for efficient electrocatalytic reduction of carbon dioxide to carbon monoxide[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1379-1388. doi: 10.1016/S1872-5813(21)60082-8
Citation: WANG Dong, ZHONG Da-zhong, HAO Gen-yan, LI Jin-ping, ZHAO Qiang. ZnOHF nanorods for efficient electrocatalytic reduction of carbon dioxide to carbon monoxide[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1379-1388. doi: 10.1016/S1872-5813(21)60082-8

ZnOHF纳米棒用于电催化二氧化碳还原制一氧化碳

doi: 10.1016/S1872-5813(21)60082-8
基金项目: 国家自然科学基金(21878202,21975175),山西省回国留学人员科研资助(2017-041),山西省自然科学基金(201801D121052)资助
详细信息
    作者简介:

    王栋:wangdong0512@link.tyut.edu.cn

    通讯作者:

    E-mail: zhaoqiang@tyut.edu.cn

ZnOHF nanorods for efficient electrocatalytic reduction of carbon dioxide to carbon monoxide

Funds: The project was supported by the National Natural Science Foundation of China (21878202, 21975175), the Research Project Supported by Shanxi Scholarship Council of China (2017-041) and the Natural Science Foundation of Shanxi Province (201801D121052)
  • 摘要: 通过电催化的方式将二氧化碳资源化利用是缓解或解决目前人类面临的生态危机的理想途径之一。开发廉价高效的催化剂是推动电催化二氧化碳还原走向工业化的关键。一氧化碳是重要的工业原料,利用CO2还原制备CO具有重要的研究意义,但能够将CO2转化为CO的高活性贵金属催化剂难以大规模应用,地球储量丰富的Zn基催化剂是具有潜力的替代者。然而,Zn基催化剂还原活性仍然难以满足现实需求且种类不够丰富。作者将ZnOHF材料引入到电催化CO2还原中,通过简单水热合成法制备了不同尺寸的ZnOHF纳米棒并利用流动型电解池测试其性能。纳米棒较大的比表面积以及材料表面F原子的存在使其具有良好的催化活性,流动型电解池的使用加速了反应传质过程,在−1.28 V (vs. RHE)电势下,R2-ZnOHF纳米棒的CO法拉第效率最高为76.4 %,CO分电流密度为57.53 mA/cm2
  • FIG. 922.  FIG. 922.

    FIG. 922.  FIG. 922.

    图  1  (a):样品的制备流程图;(b):Zn4CO3(OH)6、R1-ZnOHF、R2-ZnOHF及R3-ZnOHF的XRD衍射谱图

    Figure  1  (a): Sample preparation flow chart; (b): XRD patterns of Zn4CO3(OH)6, R1-ZnOHF, R2-ZnOHF and R3-ZnOHF

    图  2  (a)Zn4CO3(OH)6、(b)R1-ZnOHF、(c)R2-ZnOHF及(d)R3-ZnOHF的扫描电镜照片

    Figure  2  SEM of (a) Zn4CO3(OH)6, (b) R1-ZnOHF, (c) R2-ZnOHF and (d) R3-ZnOHF

    图  3  Zn4CO3(OH)6、R1-ZnOHF、R2-ZnOHF及R3-ZnOHF的(a)红外谱图和(b)N2吸附-脱附曲线

    Figure  3  (a) FT-IR spectra and (b) N2 adsorption/desorption isotherms of Zn4CO3(OH)6, R1-ZnOHF, R2-ZnOHF and R3-ZnOHF

    图  4  (a):R1-ZnOHF、(b):R2-ZnOHF、(c):R3-ZnOHF的XPS全谱图(表格为各元素含量及结合能位置);(d):R1-ZnOHF、R2-ZnOHF和R3-ZnOHF的表面F原子含量柱状对比

    Figure  4  XPS survey spectra of (a): R1-ZnOHF; (b): R2-ZnOHF; (c): R3-ZnOHF (the table shows the content and binding energy position of each element); (d): surface F atom content for R1-ZnOHF, R2-ZnOHF and R3-ZnOHF

    图  5  R2-ZnOHF的(a)透射电镜照片,(b)高倍透射照片,(c)EDS元素分布

    Figure  5  (a) Transmission electron microscope image, (b) High resolution transmission image, (c) EDS mapping of R2-ZnOHF

    图  6  (a)R1-ZnOHF、(b)R2-ZnOHF及(c)R3-ZnOHF的CO和H2法拉第效率;(d)R1-ZnOHF、R2-ZnOHF及R3-ZnOHF不同电位下CO法拉第效率柱状对比

    Figure  6  CO and H2 Faraday efficiency of (a) R1-ZnOHF, (b) R2-ZnOHF and (c) R3-ZnOHF; (d) CO Faraday efficiency comparison chart of R1-ZnOHF, R2-ZnOHF and R3-ZnOHF at different potentials

    图  7  R1-ZnOHF、R2-ZnOHF及R3-ZnOHF的(a)总电流密度,(b)CO分电流密度,(c)H2分电流密度,(d)EIS谱图

    Figure  7  (a) Total current density, (b) CO partial current density, (c) H2 partial current density, (d) EIS spectra of R1-ZnOHF, R2-ZnOHF and R3-ZnOHF

    图  8  Zn4CO3(OH)6和R2-ZnOHF的(a)CO法拉第效率对比,(b)H2分电流密度对比;H型电解池和流动型电解池中R2-ZnOHF的(c)CO法拉第效率,(d)总电流密度

    Figure  8  (a) CO Faraday efficiency comparison and (b) H2 partial current density comparison of Zn4CO3(OH)6 and R2-ZnOHF; (c) CO Faraday efficiency and (d) Total current density in H-type cell and Flow cell of R2-ZnOHF

    图  9  (a)反应后R2-ZnOHF的XRD谱图;(b)反应后R2-ZnOHF的扫描电镜照片;(c)稳定性测试,电解液为0.1 mol/L KHCO3

    Figure  9  (a) XRD pattern and (b) Scanning electron micrograph of R2-ZnOHF after reaction; (c) Stability Test of R2-ZnOHF in H-type cell, the electrolyte is 0.1 mol/L KHCO3

  • [1] NEREM R S, BECKLEY B D, FASULLO J T, HAMLINGTON B D, MASTERS D, MITCHUM G T. Climate-change-driven accelerated sea-level rise detected in the altimeter era[J]. Proc Natl Acad Sci,2018,115(9):2022. doi: 10.1073/pnas.1717312115
    [2] WIDLANSKY M J, LONG X, SCHLOESSER F. Increase in sea level variability with ocean warming associated with the nonlinear thermal expansion of seawater[J]. Commun Earth Environ,2020,1(1):9. doi: 10.1038/s43247-020-0008-8
    [3] ZHENG T, JIANG K, WANG H. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts[J]. Adv Mater,2018,30(48):1802066. doi: 10.1002/adma.201802066
    [4] SUN Z, MA T, TAO H, FAN Q, HAN B. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J]. Chem,2017,3(4):560−587. doi: 10.1016/j.chempr.2017.09.009
    [5] ZHANG L, ZHAO Z-J, GONG J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angew Chem Int Ed,2017,56(38):11326−11353. doi: 10.1002/anie.201612214
    [6] ROSS M B, DE LUNA P, LI Y, DINH C-T, KIM D, YANG P, SARGENT EH. Designing materials for electrochemical carbon dioxide recycling[J]. Nat Catal,2019,2(8):648−658. doi: 10.1038/s41929-019-0306-7
    [7] ROSS M B, LI Y, DE LUNA P, KIM D, SARGENT E H, YANG P. Electrocatalytic rate alignment enhances syngas generation[J]. Joule,2019,3(1):257−264. doi: 10.1016/j.joule.2018.09.013
    [8] BACK S, YEOM M S, JUNG Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO[J]. ACS Catal,2015,5(9):5089−5096. doi: 10.1021/acscatal.5b00462
    [9] LIU S, TAO H, ZENG L, LIU Q, XU Z, LIU Q, LUO J-L. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates[J]. J Am Chem Soc,2017,139(6):2160−2163. doi: 10.1021/jacs.6b12103
    [10] YANG W, DASTAFKAN K, JIA C, ZHAO C. Design of electrocatalysts and electrochemical cells for carbon dioxide reduction reactions[J]. Adv Mater Technol,2018,3(9):1700377. doi: 10.1002/admt.201700377
    [11] GARZA A J, BELL A T, HEAD-GORDON M. Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products[J]. ACS Catal,2018,8(2):1490−1499. doi: 10.1021/acscatal.7b03477
    [12] ZHANG Y-J, SETHURAMAN V, MICHALSKY R, PETERSON AA. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts[J]. ACS Catal,2014,4(10):3742−3748. doi: 10.1021/cs5012298
    [13] CAVE E R, SHI C, KUHL K P, HATSUKADE T, ABRAM D N, HAHN C, CHAN K, JARAMILLO T F. Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition metals[J]. ACS Catal,2018,8(4):3035−3040. doi: 10.1021/acscatal.7b03807
    [14] PAN Q, PENG J, SUN T, WANG S, WANG S. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites[J]. Catal Commun,2014,45:74−78. doi: 10.1016/j.catcom.2013.10.034
    [15] ZHAO S, JIN R, JIN R. Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: From bulk metals to nanoparticles and atomically precise nanoclusters[J]. ACS Energy Lett,2018,3(2):452−462. doi: 10.1021/acsenergylett.7b01104
    [16] CHEN Y, LI CW, KANAN MW. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. J Am Chem Soc,2012,134(49):19969−19972. doi: 10.1021/ja309317u
    [17] MUN Y, LEE S, CHO A, KIM S, HAN JW, LEE J. Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO[J]. Appl Catal B: Environ,2019,246:82−88. doi: 10.1016/j.apcatb.2019.01.021
    [18] LUO W, ZHANG J, LI M, ZÜTTEL A. Boosting CO Production in Electrocatalytic CO2 reduction on highly porous Zn catalysts[J]. ACS Catal,2019,9(5):3783−3791. doi: 10.1021/acscatal.8b05109
    [19] DENG W, MIN S, WANG F, ZHANG Z, KONG C. Efficient CO2 electroreduction to CO at low overpotentials using a surface-reconstructed and N-coordinated Zn electrocatalyst[J]. Dalton Trans,2020,49(17):5434−5439. doi: 10.1039/D0DT00800A
    [20] WON D H, SHIN H, KOH J, CHUNG J, LEE H S, KIM H, WOO S I. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst[J]. Angew Chem Int Ed,2016,55(32):9297−9300. doi: 10.1002/anie.201602888
    [21] NGUYEN D L T, JEE M S, WON D H, OH H-S, MIN B K, HWANG Y J. Effect of halides on nanoporous Zn-based catalysts for highly efficient electroreduction of CO2 to CO[J]. Catal Commun,2018,114:109−113. doi: 10.1016/j.catcom.2018.06.020
    [22] HSIEH Y-C, BETANCOURT L E, SENANAYAKE S D, HU E, ZHANG Y, XU W, POLYANSKY D E. Modification of CO2 reduction activity of nanostructured silver electrocatalysts by surface halide anions[J]. ACS Appl Energy Mater,2019,2(1):102−109. doi: 10.1021/acsaem.8b01692
    [23] VARELA A S, JU W, REIER T, STRASSER P. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides[J]. ACS Catal,2016,6(4):2136−2144. doi: 10.1021/acscatal.5b02550
    [24] LIU K, SMITH W A, BURDYNY T. Introductory guide to assembling and operating gas diffusion electrodes for electrochemical CO2 reduction[J]. ACS Energy Lett,2019,4(3):639−643. doi: 10.1021/acsenergylett.9b00137
    [25] WEEKES D M, SALVATORE D A, REYES A, HUANG A, BERLINGUETTE C P. Electrolytic CO2 reduction in a flow cell[J]. Acc Chem Res,2018,51(4):910−918. doi: 10.1021/acs.accounts.8b00010
    [26] REN S, JOULIÉ D, SALVATORE D, TORBENSEN K, WANG M, ROBERT M, BERLINGUETTE C P. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science,2019,365(6451):367. doi: 10.1126/science.aax4608
    [27] ZHONG D, ZHANG L, ZHAO Q, CHENG D, DENG W, LIU B, ZHANG G, DONG H, YUAN X, ZHAO Z, LI J, GONG J. Concentrating and activating carbon dioxide over AuCu aerogel grain boundaries[J]. J Chem Phys,2020,152(20):204703. doi: 10.1063/5.0007207
    [28] AHMAD S, RAWAT P, NAGARAJAN R. Facile green synthesis of Zn(OH)F from the single source precursor KZnF3[J]. Mater Lett,2015,139:86−88. doi: 10.1016/j.matlet.2014.10.037
    [29] GONG X, YU L, TIAN G, WANG L, ZHAO Y, MAI W, WANG W. Synthesis and characterization of flower-like ZnO nanostructures via flower-like ZnOHF intermediate[J]. Mater Lett,2014,127:36−39. doi: 10.1016/j.matlet.2014.04.071
    [30] MENG F, HOU N, JIN Z, SUN B, GUO Z, KONG L, XIAO X, WU H, LI M, LIU J. Ag-decorated ultra-thin porous single-crystalline ZnO nanosheets prepared by sunlight induced solvent reduction and their highly sensitive detection of ethanol[J]. Sens Actuators, B,2015,209:975−982. doi: 10.1016/j.snb.2014.12.078
    [31] ZHONG D, ZHAO Z-J, ZHAO Q, CHENG D, LIU B, ZHANG G, DENG W, DONG H, ZHANG L, LI J, LI J, GONG J. Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols[J]. Angew Chem Int Ed,2021,60(9):4879−4885. doi: 10.1002/anie.202015159
    [32] LI J, CHANG K, ZHANG H, HE M, GODDARD W A, CHEN J G, CHENG M-J, LU Q. Effectively increased efficiency for electroreduction of carbon monoxide using supported polycrystalline copper powder electrocatalysts[J]. ACS Catal,2019,9(6):4709−4718. doi: 10.1021/acscatal.9b00099
    [33] QIN B, LI Y, FU H, WANG H, CHEN S, LIU Z, PENG F. Electrochemical reduction of CO2 into tunable syngas production by regulating the crystal facets of earth-abundant Zn catalyst[J]. ACS Appl Mater Interfaces,2018,10(24):20530−20539. doi: 10.1021/acsami.8b04809
  • 加载中
图(10)
计量
  • 文章访问数:  852
  • HTML全文浏览量:  172
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 修回日期:  2021-04-01
  • 网络出版日期:  2021-04-22
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回