留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子筛催化纤维素和淀粉转化制糠醛

郑洪岩 赵子龙 肖鲁青山 赵文诗 梁栩彬 薛彦峰 杨红 牛宇岚 朱玉雷

郑洪岩, 赵子龙, 肖鲁青山, 赵文诗, 梁栩彬, 薛彦峰, 杨红, 牛宇岚, 朱玉雷. 分子筛催化纤维素和淀粉转化制糠醛[J]. 燃料化学学报(中英文), 2021, 49(9): 1261-1269. doi: 10.1016/S1872-5813(21)60083-X
引用本文: 郑洪岩, 赵子龙, 肖鲁青山, 赵文诗, 梁栩彬, 薛彦峰, 杨红, 牛宇岚, 朱玉雷. 分子筛催化纤维素和淀粉转化制糠醛[J]. 燃料化学学报(中英文), 2021, 49(9): 1261-1269. doi: 10.1016/S1872-5813(21)60083-X
ZHENG Hong-yan, ZHAO Zi-long, XIAO Lu-qingshan, ZHAO Wen-shi, LIANG Xu-bin, XUE Yan-feng, YANG Hong, NIU Yu-lan, ZHU Yu-lei. Catalytic conversion of cellulose and starch to furfural over zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1261-1269. doi: 10.1016/S1872-5813(21)60083-X
Citation: ZHENG Hong-yan, ZHAO Zi-long, XIAO Lu-qingshan, ZHAO Wen-shi, LIANG Xu-bin, XUE Yan-feng, YANG Hong, NIU Yu-lan, ZHU Yu-lei. Catalytic conversion of cellulose and starch to furfural over zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1261-1269. doi: 10.1016/S1872-5813(21)60083-X

分子筛催化纤维素和淀粉转化制糠醛

doi: 10.1016/S1872-5813(21)60083-X
基金项目: 国家自然科学基金青年项目(21908151)和山西省高等学校科技创新项目(2019L0925)资助
详细信息
    作者简介:

    郑洪岩(1979-),女,山东乳山市人,博士,副教授,从事生物质催化转化研究

    通讯作者:

    Tel: 0351-3569476, E-mail: 30863711@qq.com

  • 中图分类号: O629.1;O626.1

Catalytic conversion of cellulose and starch to furfural over zeolites

Funds: The project was supported by the National Natural Science Foundation of China (21908151), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0925)
  • 摘要: 采用四种分子筛进行纤维素和淀粉催化转化反应,并借助X射线衍射、铝核磁、吡啶吸附红外光谱和NH3-TPD等手段,对分子筛酸性质及孔道结构在催化纤维素和淀粉转化过程中的作用规律进行了研究。结果表明,Hβ分子筛上合适的B酸和L酸强度、数量及孔道结构使纤维素和淀粉主要反应生成糠醛。HY分子筛因酸性相对较弱,无法有效催化纤维素转化,但能有效催化淀粉生成5-羟甲基糠醛。H-mordenite和HZSM-5分子筛没有足够的L酸位,使纤维素和淀粉反应生成的葡萄糖无法异构为果糖,抑制了果糖进一步转化为糠醛或5-羟甲基糠醛的反应。5-羟甲基糠醛的生成取决于分子筛的酸性质,糠醛的生成除了由分子筛的酸性质决定,还需要合适的孔道结构。
  • FIG. 911.  FIG. 911.

    FIG. 911.  FIG. 911.

    图  1  纤维素和淀粉转化的示意图

    Figure  1  Schematic illustration of conversion of cellulose and starch

    图  2  分子筛催化剂的NH3-TPD谱图

    Figure  2  NH3-TPD profiles of the zeolites

    图  3  分子筛催化剂的XRD (a)和铝固体核磁谱图(b)

    Figure  3  XRD (a) and 27Al MAS NMR (b) spectra of the zeolites

    表  1  分子筛的化学组成、织构性质及酸性质

    Table  1  Chemical composition, physical properties and acidity of zeolites

    CatalystSi/AlaSBETb/(m2·g−1)Smicrob/(m2·g−1)Py-FTIR/(μmol·g−1)Pore diameter/Å[19]
    BcLcB/LcBdLd
    134853323121781.82211596.6 × 6.7 5.6 × 5.6
    HY35204433011252.4133897.4 × 7.4
    H-Me9406349297427.1261137.0 × 6.7 3.4 × 4.8
    HZSM-5193181903263110.5299175.1 × 5.5 5.3 × 5.6
    a: determined by ICP analysis; b: SBET: BET surface area, Smicro: micropore area; c: the acid density was determined after desorption at 200 ℃; d: the acid density was determined after desorption at 350 ℃; e: H-M: H-mordenite
    下载: 导出CSV

    表  2  纤维素在不同分子筛上的转化a

    Table  2  Conversion of cellulose over various zeolites a

    EntryCatalystConversion x/%Yield w/%
    gluFFAHMF
    196.90.234.21.0
    2HY22.30.12.02.7
    3H-M42.514.91.22.4
    4HZSM-562.024.63.03.7
    a: 0.3 g catalyst, 10.5 g cellulose/γ-butyrolactone-water, cellulose concentration 4.8%, water concentration 20%, 170 ℃, 180 min, 2 MPa N2; glu: glucose, HMF: 5-hydroxymethylfurfural, FFA: furfural
    下载: 导出CSV

    表  3  淀粉在不同分子筛上的转化a

    Table  3  Conversion of starch over various zeolites a

    EntryCatalystConversion x/%Yield w/%
    gluFFAHMFLA
    199.90.641.98.80.4
    2HY99.91.47.647.43.7
    3H-M74.439.70.71.21.5
    4HZSM-583.644.51.82.68.4
    a: 0.2 g catalyst, 10.5 g starch/γ-butyrolactone-water, starch concentration 4.8%, water concentration 4.8%, 170 ℃, 40 min, 2 MPa N2; LA: levulic acid
    下载: 导出CSV

    表  4  葡萄糖在不同分子筛上的转化a

    Table  4  Conversion of glucose over various zeolites a

    EntryCatalystConversion x/%Yield w/%
    fruFFAHMFLA
    199.92.142.814.013.3
    2HY99.83.26.248.28.1
    3H-M64.32.01.11.84.5
    4HZSM-569.80.73.51.914.7
    a: 0.2 g catalyst, 10.5 g glucose/γ-butyrolactone-water, glucose concentration 4.8%, water concentration 4.8%, 170 ℃, 40 min, 2 MPa N2; fru: fructose
    下载: 导出CSV

    表  5  果糖在不同分子筛上的转化a

    Table  5  Conversion of fructose over various zeolites a

    EntryCatalystConversion x/%Yield w/%
    FFAHMFLA
    199.949.517.512.4
    2HY99.93.456.03.4
    3H-M87.825.239.73.0
    4HZSM-599.723.048.711.9
    a: 0.2 g catalyst, 10.5 g fructose/γ-butyrolactone-water, fructose concentration 4.8%, water concentration 4.8%, 170 ℃, 40 min, 2 MPa N2
    下载: 导出CSV

    表  6  淀粉在Hβ分子筛上的转化a

    Table  6  Conversion of starch over Hβ zeolite a

    Entryt/ ℃Water
    concentration
    w/%
    Conversion
    x/%
    Yield w/%
    glufruFFAHMF
    11404.895.09.82.029.413.8
    21504.896.84.20.137.811.1
    31604.897.51.20.140.810.3
    41704.899.90.60.141.98.8
    51804.899.90.10.137.47.9
    6170099.00.60.137.510.7
    71709.599.90.20.142.79.4
    81701599.90.20.138.413.3
    91702099.90.40.136.518.3
    101703099.03.71.228.828.4
    111704099.016.74.820.827.2
    12c1709.599.90.30.139.59.8
    13d1709.599.90.10.138.19.6
    a: 0.2 g catalyst, 10.5 g starch/γ-butyrolactone-water, starch concentration 4.8%, 40 min, 2 MPa N2; c: 90 min; d: 180 min
    下载: 导出CSV

    表  7  纤维素在Hβ分子筛上的转化a

    Table  7  Conversion of cellulose over Hβ zeolite a

    Entryt/ ℃Water concentration w/%Conversion x/%Yield w/%
    glufruFFAHMFLA
    11602047.50.50.121.02.026.7
    21702096.90.20.134.21.028.0
    31802098.30.10.130.20.620.6
    4170085.30.10.122.72.15.5
    51704.889.90.10.125.54.37.5
    61709.590.10.20.127.51.213.4
    71701596.00.20.130.90.322.9
    81703065.31.00.126.92.335.0
    91704042.51.30.313.31.922.2
    10b1702062.40.60.321.82.618.4
    11c1702083.70.40.229.42.022.2
    12d1702098.00.10.128.60.620.8
    a: Hβ 0.3 g, 10.5 g cellulose/γ-butyrolactone-water, cellulose concentration 4.8%; 180 min, 2 MPa N2; b: 40 min; c: 90 min; d: 300 min
    下载: 导出CSV

    表  8  Hβ分子筛的重复利用a

    Table  8  Reusability of Hβ zeolite for converting starch and cellulose a

    EntryRecycling runsSubstrateReaction time/minWater concentration w/%FFA yield w/%
    10starch409.542.7
    21starch409.537.6
    32starch409.535.8
    43starch409.533.3
    54starch409.532.9
    6b5starch409.539.6
    70cellulose1802034.2
    81cellulose1802028.3
    92cellulose1802024.5
    103cellulose1802020.3
    11b4cellulose1802029.7
    a: starch, Hβ 0.2 g; cellulose, Hβ 0.3 g; 10.5 g starch or cellulose/γ-butyrolactone-water, starch or cellulose concentration 4.8%; 170 ℃,2 MPa N2; b: the Hβ zeolite after recycling runs was calcined at 500 ℃ for 5 h
    下载: 导出CSV
  • [1] KARINEN R, VILONEN K, NIEMELA M. Biorefining: Heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural[J]. ChemSusChem,2011,4(8):1002−1016. doi: 10.1002/cssc.201000375
    [2] 袁正求, 龙金星, 张兴华, 夏 莹, 王铁军, 马隆龙. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展,2016,28(1):103−110. doi: 10.7536/PC150744

    YUAN Zheng-qiu, LONG Jin-xing, ZHANG Xing-hua, XIA Ying, WANG Tie-jun, MA Long-long. Catalytic conversion of lignocellulose into energy platform chemicals[J]. Prog Chem,2016,28(1):103−110. doi: 10.7536/PC150744
    [3] WANG Y, DING G, YANG X, ZHENG H, ZHU Y, LI Y. Selectively convert fructose to furfural or hydroxymethylfurfural on Beta zeolite: The manipulation of solvent effects[J]. Appl Catal B: Environ,2018,235:150−157. doi: 10.1016/j.apcatb.2018.04.043
    [4] BOZELL J J, PETERSEN G R. Technology development for the production of biobased products from biorefinery carbohydrates–the US Department of Energy’s “Top 10” revisited[J]. Green Chem,2010,12(4):539−554. doi: 10.1039/b922014c
    [5] 郑洪岩, 王月清, 常西亮, 牛宇岚, 杨红, 宋永波, 姚英, 丁国强, 朱玉雷. Hβ分子筛催化甜高粱秆汁转化制呋喃类化合物[J]. 燃料化学学报,2019,47(5):605−610. doi: 10.3969/j.issn.0253-2409.2019.05.012

    ZHENG Hong-yan, WANG Yue-qing, CHANG Xi-liang, NIU Yu-lan, YANG Hong, SONG Yong-bo, YAO Ying, DING Guo-qiang, ZHU Yu-lei. Catalytic conversion of sweet sorghum stalk juice to furan compounds over Hβ zeolite[J]. J Fuel Chem Technol,2019,47(5):605−610. doi: 10.3969/j.issn.0253-2409.2019.05.012
    [6] MOREAUA C, BELGACEM M N, GANDINI A. Recent Catalytic advances in the chemistry of substituted furans from carbohydrates and in theensuing polymers[J]. Top Catal,2004,27(1/4):11−30.
    [7] DUTTA S, DE S, SAHA B, ALAM MD I. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels[J]. Catal Sci Technol,2012,2(10):2025−2036. doi: 10.1039/c2cy20235b
    [8] LANGE J P, VAN DER HEIDE E, VAN BUIJTENEN J, PRICE R. Furfural-a promising platform for lignocellulosic biofuels[J]. ChemSusChem,2012,5(1):150−166. doi: 10.1002/cssc.201100648
    [9] 黄仲涛, 耿建铭. 工业催化[M]. 3版. 北京: 化学工业出版社, 2014, 70−71.

    HUANG Zhong-tao, GENG Jian-ming. Industrial Catalysis[M]. 3nd ed. Beijing: Chemical Industry Press, 2014, 70−71.
    [10] GÜRBÜZ E I, GALLO J R, ALONSO D M, WETTSTEIN S G, LIM W Y, DUMESIC J A. Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone[J]. Angew Chem Int Ed,2013,52(4):1270−1274. doi: 10.1002/anie.201207334
    [11] WANG Y, YANG X, ZHENG H, LI X, ZHU Y, LI Y. Mechanistic insights on catalytic conversion fructose to furfural on beta zeolite via selective carbon-carbon bond cleavage[J]. Mol Catal,2019,463:130−139.
    [12] CUI J, TAN J, DENG T, CUI X, ZHU Y, LI Y. Conversion of carbohydrates to furfural via selective cleavage of the carbon-carbon bond: the cooperative effects of zeolite and solvent[J]. Green Chem,2016,18(6):1619−1624. doi: 10.1039/C5GC01948F
    [13] KIM B, JEONG J, LEE D, KIM S, YOON H J, LEE Y S, CHO J K. Direct transformation of cellulose into 5-hydroxymethyl-2-furfural using a combination of metal chlorides in imidazolium ionic liquid[J]. Green Chem,2011,13(6):1503−1506. doi: 10.1039/c1gc15152e
    [14] 王小艳, 秦磊, 刘辉, 李凡, 李春, 佟毅. 淀粉质燃料乙醇发酵胁迫及菌株耐受性改造[J]. 精细化工,2019,36(4):568−574.

    WANG Xiao-yan, QIN Lei, LIU Hui, LI Fan, LI Chun, TONG Yi. Research progress of starchy fuel ethanol fermentation and the tolerance of Saccharomyces cerevisiae[J]. Fine Chem,2019,36(4):568−574.
    [15] 罗虎, 孙振江, 李永恒, 梁坤国, 许旺发. 玉米淀粉生产酒精的研究[J]. 酿酒科技,2018,(2):30−33.

    LUO Hu, SUN Zhen-jiang, LI Yong-heng, LIANG Kun-guo, XU Wang-fa. Alcohol production by corn starch[J]. Liquor-making Sci Technol,2018,(2):30−33.
    [16] WANG J, XI J, WANG Y. Recent advances in the catalytic production of glucose from lignocellulosic biomass[J]. Green Chem,2015,17(2):737−751.
    [17] YANG Y, XIANG X, TON D G, HU C, ABU-OMAR M M. One-pot synthesis of 5-hydroxymethylfurfural directly from starch over SO42−/ZrO2-Al2O3 solid catalyst[J]. Bioresource Technol,2012,116:302−306. doi: 10.1016/j.biortech.2012.03.081
    [18] 徐如人, 庞文琴, 于吉红, 霍启升, 陈接胜. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004, 247−252.

    XU Ru-ren, PANG Wen-qin, YU Ji-hong, HUO Qi-sheng, CHEN Jie-sheng. Chemistry-Zeolites and Porous Materials[M]. Beijing: Science Press, 2004, 247−252.
    [19] 栗同林, 刘希尧, 朴玉玲, 蔡春飞, 王祥生. 萘与不同烷基化试剂在沸石上的烷基化反应[J]. 催化学报,1998,19(2):181−183. doi: 10.3321/j.issn:0253-9837.1998.02.019

    LI Tong-lin, LIU Xi-yao, PIAO Yu-ling, CAI Chun-fei, WANG Xing-sheng. Alkylation of naphthalene with various alkylating agents over some zeolites[J]. Chin J Catal,1998,19(2):181−183. doi: 10.3321/j.issn:0253-9837.1998.02.019
    [20] 刘萌, 吴志杰, 潘 涛. 沸石分子筛酸性质表征方法研究进展[J]. 应用化学,2020,37(1):1−15. doi: 10.11944/j.issn.1000-0518.2020.01.190199

    LIU Meng, WU Zhi-jie, PAN Tao. Recent advance in the characterization of acidic properties of zeolites[J]. Chin J Appl Chem,2020,37(1):1−15. doi: 10.11944/j.issn.1000-0518.2020.01.190199
    [21] YUE C, LI G, PIDKO E A, WIESFELD J J, RIGUTTO M, HENSEN E J M. Dehydration of glucose to 5-hydroxyme thylfurfural using Nb-doped tungstite[J]. ChemSusChem,2016,9(17):2421−2429.
  • 加载中
图(4) / 表(8)
计量
  • 文章访问数:  680
  • HTML全文浏览量:  393
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-19
  • 修回日期:  2021-04-01
  • 网络出版日期:  2021-04-22
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回