留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An analysis of waste gasification and its contribution to China’s transition towards carbon neutrality and zero waste cities

LEE Roh Pin SEIDL Ludwig Georg HUANG Qiu-liang MEYER Bernd

LEERoh Pin, SEIDLLudwig Georg, HUANGQiu-liang, MEYERBernd. 垃圾气化分析及其对中国实现碳中和与无废城市建设的贡献[J]. 燃料化学学报(中英文), 2021, 49(8): 1057-1076. doi: 10.1016/S1872-5813(21)60093-2
引用本文: LEERoh Pin, SEIDLLudwig Georg, HUANGQiu-liang, MEYERBernd. 垃圾气化分析及其对中国实现碳中和与无废城市建设的贡献[J]. 燃料化学学报(中英文), 2021, 49(8): 1057-1076. doi: 10.1016/S1872-5813(21)60093-2
LEE Roh Pin, SEIDL Ludwig Georg, HUANG Qiu-liang, MEYER Bernd. An analysis of waste gasification and its contribution to China’s transition towards carbon neutrality and zero waste cities[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1057-1076. doi: 10.1016/S1872-5813(21)60093-2
Citation: LEE Roh Pin, SEIDL Ludwig Georg, HUANG Qiu-liang, MEYER Bernd. An analysis of waste gasification and its contribution to China’s transition towards carbon neutrality and zero waste cities[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1057-1076. doi: 10.1016/S1872-5813(21)60093-2

垃圾气化分析及其对中国实现碳中和与无废城市建设的贡献

doi: 10.1016/S1872-5813(21)60093-2
详细信息
  • 中图分类号: X784

An analysis of waste gasification and its contribution to China’s transition towards carbon neutrality and zero waste cities

Funds: The project was supported by the German Federal Ministry of Education (BMBF) (01LN1713A)
More Information
    Corresponding author: E-mail: roh-pin.lee@iec.tu-freiberg.de
  • for more information about the HTW gasification technology and its application in Berrenrath and others, please refer to[25-28].
  • for more information on the Lurgi FBDB technology and its application in SVZ Schwarze Pumpe, please refer to[29-31].
  • for more information on the BGL technology and its application in SVZ Schwarze Pumpe, please refer to[27, 32, 33].
  • for more information on the GSP technology and its application in SVZ Schwarze Pumpe, please refer to[22, 27, 30, 34].
  • for more information on the Ebara UBE Process and its commercial applications, please refer to[41-44].
  • for more information on the Enerkem gasification technology and its commercial applications, refer to[45-51].
  • for more information on the TRI process and its commercial applications, please refer to[52-54].
  • for more information on InEnTec and the commercialization of its PEM process, please refer to[55, 56].
  • for more information about the FastOx technology from Sierra Energy and its commercial applications, please refer to[57-60].
  • Insights by Prof. Bernd Meyer from first-hand experience with operations at the HTW demonstration plant in Berrenrath (then as head of the R&D division for waste gasification at Rheinbraun AG between 1989 to 1994) as well as from the operations at SVZ Schwarze Pumpe (then as chief technology consultant for SVZ Schwarze Pumpe between 1994 to 2007).
  • The objective of the generalized evaluation is to present readers with first insights into the issues which would be associated and must be addressed for waste gasification via different gasification principles. Note that the performance of specific gasification technologies may differ from this generalized and qualitative evaluation.
  • 摘要: 气化是实现化学利用碳资源(尤其是煤)生产化学品和燃料的关键工艺。目前,全球拥有超过272套气化装置,主要应用于煤化工,尤其在中国。由于在一个化工厂通过技术集成达到工业规模的集中生产可实现减少二氧化碳排放并促进碳密集型行业的循环经济,如废物管理、化学和交通行业,因此,近年来全球对垃圾气化的兴趣日益浓厚,尤其是那些在煤气化技术方面积累了丰富的人力资本和运营经验以及拥有完整Coal-to-X产品价值链的国家,如中国,在挖掘通过垃圾气化实现Waste-to-X的潜力方面处于独特的地位。具体而言,废弃物可用于补充煤气化生产如下产品:(1)具有较低或零碳足迹的化学品,具体取决于废物是来源于化石资源还是生物资源。(2)来自生物废弃物的零碳足迹的绿色“氢”,以补充或替代来自煤气化或蒸汽重整得到的“灰色”氢,以供给氢能汽车,并推动工业脱碳。(3)来自生物废弃物的CO2中性合成液体燃料,用于交通工具,以补充或替代石油燃料和合成煤制液体燃料。然而,迄今为止,利用垃圾作为气化原料的操作经验有限,并且文献中也很少涉及以前和当前的工业垃圾气化经验。为了填补这些空白,本研究介绍了1980年代至2000年代德国的两项开创性技术发展—贝伦拉特(Berrenrath)和SVZ黑水泵(即Sekundärrohstoff-Verwertungszentrum: 黑水泵二次原料回收中心),并分享了以下三种垃圾与煤共气化技术(即Waste&Coal-to-X) 的相关认识和经验教训:固定床气化: 鲁奇干法排渣技术以及BGL熔渣气化技术。 流化床气化: 高温温克勒(HTW- High Temperature Winkler)气化工艺。气流床气化: GSP(Gaskombinat Schwarze Pumpe),即西门子气化工艺。此外,本研究也总结了目前全球 100% 垃圾气化技术的发展,即Waste-to-X。在气化技术的三种类型中,研发领域和工业界均对流化床与气流床(作为后期气化)技术的结合产生了浓厚的兴趣,这里介绍三个相关技术的重大发展—Ebara-Ube、Enerkem和ThermoChem Recovery International的技术。除此之外,固定床气化工艺的发展也得到了关注,本文介绍了两个相关技术的重大发展—InEnTec(将固定床与等离子气化相结合)和Sierra Energy(改造传统高炉转炉进行垃圾气化)的技术。借鉴以往和当前的国际发展经验,凭借其庞大的气化规模和丰富的专业知识,逐步将垃圾作为原料融入到煤气化中可以作为中国迈向循环经济和无废城市的第一步。将垃圾与煤共气化技术作为通向垃圾气化的桥梁,不仅可以使中国利用现有的人力资本和基础设施,还可以创造新的就业和商业机会,并支持中国实现可持续的垃圾管理策略,即在进行焚烧和填埋之前先进行减量、再利用和再循环。然而,将煤气化技术直接用于垃圾气化具有挑战性并且充满了较大的风险。本研究分享了贝伦拉特和 SVZ 黑水泵在垃圾与煤共气化方面遇到的各种运行问题以及从中得到的最新认识。然后介绍了这些积累的经验及认识是如何被考虑并应用到德国弗莱贝格工业大学的能源化工所开发的Flexi技术当中,包括:基于BGL熔渣气化技术开发FlexiSlag固定床气化技术。基于GSP气化技术开发FlexiEntrained气流床气化技术。基于HTW气化技术开发FlexiCOORVED气化技术。目前,Flexi技术在德国弗莱贝格开展中试规模运行,其目标是实现:(1)多元原料气化(例如生物质、煤、石油焦、不同类型的废物);(2)100%垃圾气化;(3)灵活的目标产品(即调整配置得到最大化的合成气产出,其中可含有最大化或最小化的甲烷、焦油和油的含量)以支持全球向碳中和和无废城市转型。鉴于全球(包括中国)实现无废城市和碳中和的目标,垃圾气化技术的长远发展不仅要向100%垃圾气化发展,还必须满足以下可持续性标准才能做出实质性的贡献:(1)多元进料,能够灵活利用多种类型的(废物)原料。(2)碳回收率最大化,以确保垃圾中的碳转移到产品中,而不是在整个过程链中以CO2的形式排放到环境中。(3)通过生产玻璃渣、从渣中回收金属和零废水排放,将环境影响降至最低。本研究最后根据上述三个可持续性标准对三种气化类型进行了定性的整体评价,阐述了它们在垃圾气化应用中的优势和劣势。
    for more information about the HTW gasification technology and its application in Berrenrath and others, please refer to[25-28].
    for more information on the Lurgi FBDB technology and its application in SVZ Schwarze Pumpe, please refer to[29-31].
    for more information on the BGL technology and its application in SVZ Schwarze Pumpe, please refer to[27, 32, 33].
    for more information on the GSP technology and its application in SVZ Schwarze Pumpe, please refer to[22, 27, 30, 34].
    for more information on the Ebara UBE Process and its commercial applications, please refer to[41-44].
    for more information on the Enerkem gasification technology and its commercial applications, refer to[45-51].
    for more information on the TRI process and its commercial applications, please refer to[52-54].
    for more information on InEnTec and the commercialization of its PEM process, please refer to[55, 56].
    for more information about the FastOx technology from Sierra Energy and its commercial applications, please refer to[57-60].
    Insights by Prof. Bernd Meyer from first-hand experience with operations at the HTW demonstration plant in Berrenrath (then as head of the R&D division for waste gasification at Rheinbraun AG between 1989 to 1994) as well as from the operations at SVZ Schwarze Pumpe (then as chief technology consultant for SVZ Schwarze Pumpe between 1994 to 2007).
    The objective of the generalized evaluation is to present readers with first insights into the issues which would be associated and must be addressed for waste gasification via different gasification principles. Note that the performance of specific gasification technologies may differ from this generalized and qualitative evaluation.
  • FIG. 831.  FIG. 831.

    FIG. 831. 

    Figure  1  Waste-to-X production routes

    Figure  2  Examples of waste feedstock utilized in the HTW Demonstration Plant

    From left to right: mixed plastic fluff, chlorine-containing mixed plastic waste, compacted mixed plastic waste, dried sewage sludge (granulated), dried sewage sludge

    Figure  3  Concept of the Krupp Uhde PreCon® process[25]

    Figure  4  Simplified process diagram of the SVZ Schwarze Pumpe[35]

    Figure  5  Examples of waste feedstock utilized in the SVZ Schwarze Pumpe

    From left to right: compacted municipal solid waste (in different sizes), compacted shredded disused paper money from the GDR and briquetted black-market cigarettes, compacted dried sewage sludge and shredded wood waste

    Figure  6  FlexiSlag gasification pilot plant at IEC, TU Bergakademie Freiberg

    Figure  7  FlexiEntrained gasification pilot plant in Freiberg

    Figure  8  FlexiCOORVED gasification pilot plant at IEC, TU Bergakademie Freiberg

    Table  1  Input limits (acceptable temporary peak values) for contaminants at SVZ Schwarze Pumpe[34]

    Arsenic< 2000 mg/kg
    Cadmium< 1000 mg/kg
    Chloride< 10%
    Chrome< 20000 mg/kg
    Copper< 100000 mg/kg
    Cyanide< 500 mg/kg
    Dioxin & Furan< 50000 ng TE/kg
    Lead< 10000 mg/kg
    Mercury< 200 mg/kg
    Nickel< 5000 mg/kg
    PCB< 500 mg/kg
    Sulphur< 30000 mg/kg
    Tin< 10000 mg/kg
    Zinc< 100000 mg/kg
    Water content< 20%
    Calorific valueNo limit
    Ash contentNo limit
    下载: 导出CSV

    Table  2  Overview of waste gasification technologies

    Technology provider (Process Name) Feedstock Operating Period Location Reactor capacity realized (planned) Products
    type pre-treatment
    Fixed-bed gasification technology
    *Air Liquide (Lurgi Fixed Bed Dry Bottom - FBDB) mixed plastics, MSW, RDF, sewage sludge,... + 25% coal pelletized 1991−2007 Schwarze Pumpe, Germany 15 t/h (N.A.) Methanol, Electricity
    *Envirotherm (British
    Gas-Lurgi - BGL)
    mixed plastics, MSW, RDF, sewage sludge,... +15% coal pelletized 2001−2007 Schwarze Pumpe, Germany 30 t/h (N.A.) Methanol, Electricity
    InEnTec (Plasma Enhanced Melting System - PEM) mixed plastics, RDF, medical waste shredded 2011-current Columbia Ridge, USA 1 t/h (5 t/h) H2
    Sierra Energy (FastOx) MSW, woody biomass shredded 2017-current Fort Hunter Ligget, USA <1 t/h (2 t/h) FT-Fuels, Electricity
    Fluidized-bed gasification technology
    *Thyssenkrupp (High Temperature Winkler- HTW) mixed plastics, MSW, wood, sewage sludge,... + 36% lignite pelletized 1986−1997 Berrenrath, Germany 30 t/h (N.A.) Methanol
    EBARA Environmental Plant Co. & UBE Industries (Ebara Ube Process- EUP) mixed plastics pelletized 2003-current Kawasaki, Japan 8 t/h (N.A.) H2 (for NH3), CO2
    Enerkem (Enerkem Process) MSW, mixed plastics, woody biomass shredded 2014-current Edmonton, Canada 13 t/h (N.A.) Ethanol (from Methanol)
    ThermoChem Recovery International (TRI Steam Reforming) MSW, mixed plastics, woody waste shredded 2021 (planned) Storey County, USA 5 t/h (20−25 t/h) FT-Fuels
    N.A. – no information available.
    Information indicated with * are for pioneering developments in Germany which are no longer in operation
    下载: 导出CSV
  • [1] SCHEITHAUER M, MAMANI SOLIZ PE, LEE RP, KELLER F, MEYER B, BUI X-N, HUONG TTT. Assessment of feasible and effective technologies for the chemical utilization of domestic coal for value-added production in vietnam[A]//Proceedings of the international conference on innovations for sustainable and responsible mining[C]. Cham: Springer International Publishing, 2021, 364–384.
    [2] VAMVUKA D. Gasification of coal[J]. Energy Exploration & Exploitation,1999,17:515−581. doi: 10.1177/014459879901700603
    [3] U. S. DEPARTMENT OF ENERGY, NATIONAL ENERGY TECHNOLOGY LABORATORY. 12.3. Types of coal-derived chemicals[EB]. https://netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/coal-derived-chem, 2021-02-25/2021-02-25.
    [4] Global Syngas Technologies Council. The gasification industry[DB]. https://www.globalsyngas.org/resources/the-gasification-industry/, 2021-02-25/2021-02-25.
    [5] LEE RP, MEYER B, HUANG Q, VOSS R. Sustainable waste management for zero waste cities in China: potential, challenges and opportunities[J]. Clean Energy,2020,4:169−201. doi: 10.1093/ce/zkaa013
    [6] Ministry of Housing and Urban-Rural Development of The People’s Republic of China. Statistical yearbooks of urban and rural construction [DB]. http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/jstjnj/index.html, 2021-02-25/2021-02-25.
    [7] LEE RP, KELLER F, MEYER B. A concept to support the transformation from a linear to circular carbon economy: net zero emissions, resource efficiency and conservation through a coupling of the energy, chemical and waste management sectors[J]. Clean Energy,2017,1:102−113. doi: 10.1093/ce/zkx004
    [8] ZERO WASTE EUROPE. The impact of waste-to-energy incineration on climate: Policy briefing[DB]. https://zerowasteeurope.eu/wp-content/uploads/edd/2019/09/ZWE_Policy-briefing_The-impact-of-Waste-to-Energy-incineration-on-Climate.pdf, 2019-09/2021-02-25.
    [9] MCGRATH M. Climate change: China aims for ‘carbon neutrality by 2060’[EB]. https://www.bbc.com/news/science-environment-54256826, 2020-09-22/2021-02-25.
    [10] YE M, ZHU W, XU Z, LIU Z. Coordinated development of coal chemical and petrochemical industries in China[J]. Bull Chin Acad Sci,2019,34:417−425.
    [11] FLANDERS. Petrochemical and chemical industry in china[R]. Investment & Trade Market Survey. https://www.flandersinvestmentandtrade.com/export/sites/trade/files/market_studies/CHINAS%20PETROCHEMICAL%20AND%20CHEMICAL%20INDUSTRY%20V3.pdf, 2015-11/2021-02-25.
    [12] National Bureau of Statistics. Statistical yearbooks[DB]. https://data.stats.gov.cn/easyquery.htm?cn=C01, 2021-02-25/2021-02-25.
    [13] LIN B, LONG H. Emissions reduction in China’s chemical industry-based on LMDI[J]. Renewable Sustainable Energy Rev,2016,53:1348−1355. doi: 10.1016/j.rser.2015.09.045
    [14] ZHANG Y, YUAN Z, MARGNI M, BULLE C, HUA H, JIANG S, LIU X. Intensive carbon dioxide emission of coal chemical industry in China[J]. Appl Energy,2019,236:540−550. doi: 10.1016/j.apenergy.2018.12.022
    [15] STATISTA. Carbon dioxide emissions from fossil fuel and industrial purposes in China from 1970 to 2019[DB]. https://www.statista.com/statistics/486008/co2-emissions-china-fossil-fuel-and-industrial-purposes/, 2020-10-30/2021-03-01.
    [16] JOHNSON J H. Automotive emissions[A]. // WATSON A Y, BATES R R, KENNEDY D. Air pollution, the automobile, and public health[C]. Washington (DC): National Academies Press (US), 1988, 39–77.
    [17] Ministry of Ecology and Environment of The People’s Republic of China. The People’s Republic of China second biennial update report on climate change [DB]. https://unfccc.int/sites/default/files/resource/China%202BUR_English.pdf, 2018-12/2021-02-25.
    [18] LIU Y, YANG S, LIU X, GUO P, ZHANG K. Driving forces of temporal-spatial differences in CO2 emissions at the city level for China’s transport sector[J]. Environ Sci Pollut Res Int,2021,28:25993−26006. doi: 10.1007/s11356-020-12235-4
    [19] DUDLEY D. China is set to become the world’s renewable energy superpower[EB]. https://www.forbes.com/sites/dominicdudley/2019/01/11/china-renewable-energy-superpower/?sh=3ebe5b35745a, 2019-01-11/2021-02-25.
    [20] U. S. Department of Energy, National Energy Technology Laboratory. China gasification database[DB]. https://netl.doe.gov/research/coal/energy-systems/gasification/gasification-plant-databases/china-gasification-database, 2014-07/2021-02-25.
    [21] MINCHENER A. Challenges and opportunities for coal gasification in developing countries[Z]. London: IEA Clean Coal Centre, 2013.
    [22] GRÄBNER M. Industrial Coal Gasification Technologies Covering Baseline and High-Ash Coal[M]. Weinheim: Wiley-VCH, 2015.
    [23] HIGMAN C, VAN DER BURGT M. Gasification. burlington: elsevier science, 2011.
    [24] MATERAZZI M. Clean Energy from Waste: Fundamental Investigations on Ashes and Tar Behaviours in a Two Stage Fluid Bed-Plasma Process for Waste Gasification[M]. Cham: Springer International Publishing, 2017.
    [25] ABRAHAM R, DEUTSCH M, LÜTGE C, ADLHOCH W, MITTELSTÄDT A, RENZENBRINK W, WISCHNEWSKI R. Use of the precon process with integrated HTW-gasification for household refuse recycling in japan[J]. Braunkohle,1999,51:689−691.
    [26] Adlhoch W. Beiträge zur DGMK-Fachbereichstagung "Energetische und Stoffliche Nutzung von Abfällen und Biomassen": 10.-12. April 2000 in Velen/Westf (Autorenmanuskripte). Hamburg: Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle, 2000.
    [27] SCHMALFELD J. Die Veredlung und Umwandlung von Kohle: Technologien und Projekte 1970 bis 2000 in Deutschland[Z]. Hamburg: DGMK, 2008.
    [28] RADTKE K. ThyssenKrupp uhde’s PRENFLO® and HTWTM gasification technologies: global update on technology and projects[C]//Gasification Technologies Conference 2011. San Francisco, California, 2011-10-09.
    [29] HIGMAN C. State of the gasification industry: worldwide gasification and syngas databases: 2016 update[C]//Gasification & Syngas Technologies Conference. Vancouver, 2016-10-19.
    [30] KAMKA F, JOCHMANN A. Ressourcen effizient erkunden, gewinnen, aufbereiten, nutzen und recyceln: Rohstoffliches Recycling von kohlenstoffhaltigen Abfällen[C]//68. BHT - Freiberger Universitätsforum. Freiberg, 2017-06-09.
    [31] LEE RP, LAUGWITZ A, MEHLHOSE F, MEYER B. Waste gasification: Key technology for closing the carbon cycle: coupling the energy, chemical and recycling sectors[C]//9th International Freiberg Conference. Berlin, 2018-06-03.
    [32] SANDER H-J, DARADIMUS G, HIRSCHFELDER H. Operating results of the BGL gasifier at Schwarze Pumpe[C]//Gasification Technologies. San Francisco, 2003-10-12.
    [33] BUTTKER B, GIERING R, SCHLOTTER U, HIMMELREICH B, WITTSTOCK K. Full scale industrial recovery trials of shredder residue in a high temperature slagging-bed gasifier in germany[Z]. Brussels: PlasticsEurope, 2005.
    [34] OBERMEIER T, FINDEISEN H, MARKOWSKI J. Forderungen an die Qualität von Einsatzmaterial für die Vergasung im SVZ Schwarze Pumpe[A]. // Thomé-Kozmiensky KJ. Ersatzbrennstoffe[C]. Neuruppin: TK Verlag Karl Thomé-Kozmiensky, 2002, 1–11.
    [35] MEYER B, LEE R P, REINMÖLLER M. Chemical recycling: A key building block in the transition towards zero-waste cities[C]//taiyuan energy low carbon development forum. Taiyuan, 2019-10-23.
    [36] BUTTKER B, OBERMEIER T. Methanol aus Klärschlamm: Das Konzept der SVZ Schwarze Pumpe GmbH[A]. // Thomé-Kozmiensky KJ. Technik, Wirtschaft, Umweltschutz. Verantwortungsbewusste Klärschlammverwertung[C]. Neuruppin: TK Verlag Karl Thomé-Kozmiensky, 2001, 667–686.
    [37] Kunststoff Web. Sustec: Schwarze Pumpe will keinen Abfall mehr [EB]. https://www.kunststoffweb.de/branchen-news/sustec_schwarze_pumpe_will_keinen_abfall_mehr_t208261, 2007-06-08/2021-02-25.
    [38] LEE R P, WOLFERSDORF C, KELLER F, MEYER B. Towards a closed carbon cycle and achieving a circular economy for carbonaceous resources - Net zero emissions, resource efficiency and resource conservation through coupling of the energy, chemical and recycling sectors[J]. Erdöl, Erdgas, Kohle-Oil Gas European Magazine,2017,43:76−77.
    [39] European Commission. Communication from the Commission to the European Parliment, the European Council, the Council, the European Economic and Social Committe and the Committe of the Regions[EB]. The European Green Deal. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN, 2019-12-11/2021-02-25.
    [40] European Commission. EU circular economy action plan: A new circular economy action plan for a cleaner and more competitive europe [EB]. https://ec.europa.eu/environment/circular-economy/, 2020/2021-02-25.
    [41] WALDHEIM L. Gasification of waste for energy carriers: A review[Z]. Netherlands: IEA Bioenergy, 2018.
    [42] FUJIMURA H, HIRAYAMA Y, FUJINAMI S, TAKANO K, IRIE M, HIROSE T, NAGATO S, OSHITA T, FUKUDA T. Method for treating wastes by gasification: US, US5900224A[P]. 1999-05-04.
    [43] BAILEY M P. Showa Denko completes expansion for plastic-based ammonia project[EB]. https://www.chemengonline.com/showa-denko-completes-expansion-plastic-based-ammonia-project/, 2015-07-02/2021-02-12.
    [44] JGC CORPORATION, EBARA ENVIRONMENTAL PLANT CO., LTD., UBE INDUSTRIES, LTD., SHOWA DENKO K. K. Start of the study on collaboration for promotion of gasification chemical recycling of plastic waste[DB]. https://www.sdk.co.jp/english/news/2019/37672.html, 2019-08-28/2021-02-12.
    [45] Port of Rotterdam. From waste-to-chemicals to waste-to-jet. https://www.portofrotterdam.com/en/news-and-press-releases/from-waste-to-chemicals-to-waste-to-jet, 2021-06-08/2021-08-09.
    [46] CHORNET E, VALSECCHI B, DROLET G, GAGNON M, NGUYEN B. Production and conditioning of synthesis gas obtained from biomass: US, US20100051875A1[P]. 2010-03-04.
    [47] LAVOIE J-M, MARIE-ROSE S, LYNCH D. Non-homogeneous residual feedstocks to biofuels and chemicals via the methanol route[J]. Biomass Conv Bioref,2013,3:39−44. doi: 10.1007/s13399-012-0050-6
    [48] MARIE-ROSE SC, CHORNET E, LYNCH D, LAVOIE J-M. From biomass-rich residues into fuels and green chemicals via gasification and catalytic synthesis[A]//Energy and Sustainability III[C]. Southampton, UK: WIT Press, 2011, 123–132.
    [49] DEMETRA A T, CASTALDI M J. The effects of non-recycled plastic (nrp) on gasification: a quantitative assessment[R]. https://plastics.americanchemistry.com/NRP-Gasification-Report.pdf, 2018-04-30/2021-02-25.
    [50] FOUCAULT M, CRETE J-P, DROLET G, FOULET M, DENOMME L, VALSECCHI B. Production of synthesis gas from gasifying and reforming carbonaceous materials: WO, WO2020/206538[P]. 2020-10-15.
    [51] VIERHOUT R. Biofuels and chemicals from mixed waste: the ENERKEM contribution to sustainability and circular economy[C]//9th Stakeholder Plenary Meeting - European Technology and Innovation Platform Bioenergy. Brussels, 2019-11-20.
    [52] ThermoChem Recovery International, inc. advanced syngas production for fuels, chemicals and power[C]//2nd EU-India Conference on Advanced Biofuels. New Delhi, 2019-03-11.
    [53] CHANDRAN R, NEWPORT D. The alternative route[R]. https://tri-inc.net/2017/03/28/the-alternative-route/, 2017-03/2021-02-12.
    [54] WHITTY K, BALDWIN R. Country update: Biomass gasification in the USA[DB]. http://task33.ieabioenergy.com/content/participants/country_reports, 2019-11-25/2021-02-12.
    [55] SURMA J. Conversion of municipal solid waste into clean energy products using the inentec plasma enhanced melter®[C]//California Bioresources Alliance 7th Annual Symposium. Sacramento, California, 2012-09-11.
    [56] INENTEC I N C. Deployed PEM technology[DB]. https://inentec.com/pem-technology/deployed-pem-technology/, 2021-02-12/2021-02-12.
    [57] CORBETT M J, JASBINZEK J, KASTEN C J. Tuyere for oxygen blast furnace/converter system: WO, WO2007130362A2[P]. 2007-11-15.
    [58] CLAFFIN H B, JASBINZEK J. Blast furnace with narrowed top section and method of using: US, US6030430A[P]. 2000-02-29.
    [59] Sierra Energy. FastOx pathfinder: A new future for waste[EB]. https://sierraenergy.com/wp-content/uploads/2020/05/Pathfinder-One-Sheet.pdf, 2020-05/2021-02-25.
    [60] Sierra Energy. Fort Hunter Liggett project: waste reduction and electricity generation using FastOx® gasification at U. S. army garrison [EB]. https://sierraenergy.com/wp-content/uploads/2020/05/FHL-One-Sheet.pdf, 2020-05/2021-02-12.
    [61] LEE R P, MEYER B. Synthesegas aus schwer verwertbaren Abfällen[J]. Umweltmagazin,2019,9:36−39.
    [62] THOMAS K, EBERHARD M. Country report Germany: Task 33 Thermal gasification of biomass[C]//onlineworkshop, 2020-11-19.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1045
  • HTML全文浏览量:  262
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 修回日期:  2021-04-16
  • 网络出版日期:  2021-05-12
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回