留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维贯通大孔Al2O3载体及其渣油加氢脱金属催化性能

隋宝宽 王刚 袁胜华 杨卫亚 凌凤香 王少军 何海龙

隋宝宽, 王刚, 袁胜华, 杨卫亚, 凌凤香, 王少军, 何海龙. 三维贯通大孔Al2O3载体及其渣油加氢脱金属催化性能[J]. 燃料化学学报(中英文), 2021, 49(8): 1201-1207. doi: 10.1016/S1872-5813(21)60096-8
引用本文: 隋宝宽, 王刚, 袁胜华, 杨卫亚, 凌凤香, 王少军, 何海龙. 三维贯通大孔Al2O3载体及其渣油加氢脱金属催化性能[J]. 燃料化学学报(中英文), 2021, 49(8): 1201-1207. doi: 10.1016/S1872-5813(21)60096-8
SUI Bao-kuan, WANG Gang, YUAN Shen-ghua, YANG Wei-ya, LING Feng-xiang, WANG Shao-jun, HE Hai-long. Macroporous Al2O3 with three-dimensionally interconnected structure: Catalytic performance of hydrodemetallization for residue oil[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1201-1207. doi: 10.1016/S1872-5813(21)60096-8
Citation: SUI Bao-kuan, WANG Gang, YUAN Shen-ghua, YANG Wei-ya, LING Feng-xiang, WANG Shao-jun, HE Hai-long. Macroporous Al2O3 with three-dimensionally interconnected structure: Catalytic performance of hydrodemetallization for residue oil[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1201-1207. doi: 10.1016/S1872-5813(21)60096-8

三维贯通大孔Al2O3载体及其渣油加氢脱金属催化性能

doi: 10.1016/S1872-5813(21)60096-8
基金项目: 中国石油化工股份有限公司项目(119014-3-3)资助
详细信息
    通讯作者:

    Tel: +86-411-39699476; E-mail: suibaokuan.fshy@sinopec.com

  • 中图分类号: O641; O649

Macroporous Al2O3 with three-dimensionally interconnected structure: Catalytic performance of hydrodemetallization for residue oil

Funds: The project was supported by China Petroleum & Chemical Corporation, SINOPEC (119014-3-3)
  • 摘要: 采用相分离技术制备了具有三维贯通大孔结构的Al2O3载体,载体的大孔尺寸为250 nm,比表面积174 m2/g,具有21 nm及250 nm集中的双重孔分布,抗压强度达到16.5 N/mm。采用该载体制备的渣油加氢脱金属催化剂仍然保持与载体接近的双峰孔分布、三维贯通大孔结构及较大的抗压强度等特性,Ni、Mo金属组分在载体表面分散均匀。催化剂的片层状活性相的长度为3−10 nm,堆垛层数1−7层,其中,大于4层的活性相分布约占40%,形成非均匀形态的活性相结构。与现有工业催化剂相比,三维贯通大孔渣油加氢脱金属催化剂的脱金属率、脱硫率及脱残炭率分别提高6.2%、6.0%及6.8%,孔结构、表面性质、活性相结构及其协同作用是三维贯通大孔催化剂具有优异催化性能的主要原因。
  • FIG. 845.  FIG. 845.

    FIG. 845.  FIG. 845.

    图  1  3DM Al2O3载体及3DM催化剂的XRD谱图

    Figure  1  XRD patterns of 3DM Al2O3 support and 3DM catalyst

    图  2  3DM Al2O3载体、3DM催化剂和参比剂载体的显微照片3DM Al2O3载体的光学显微照片;(b)、(c)3DM Al2O3载体的SEM照片;(e)3DM催化剂的SEM照片;(f) 参比剂所用Al2O3载体的SEM照片

    Figure  2  Micrographs of 3DM Al2O3 support, 3DM catalyst and reference support (a): Optical image of 3DM Al2O3 support; (b) and (c): SEM images of 3DM Al2O3 support; (e): SEM image of 3DM catalyst; (f): SEM image of reference support

    图  3  三维大孔载体、催化剂及参比剂的压汞法孔分布

    Figure  3  Pore size distributions of 3DM support 3DM catalyst and reference catalyst by mercury injection method

    图  4  三维大孔催化剂与参比剂的吡啶吸附FT-IR谱图

    Figure  4  FT-IR spectra of pyridine adsorption on 3DM catalyst and reference catalyst

    图  5  三维大孔催化剂与参比剂的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of 3DM catalyst and reference catalyst

    图  6  三维大孔催化剂与参比剂的高分辨透射电镜像(a)三维大孔催化剂;(b)参比剂

    Figure  6  HRTEM images of 3DM catalyst and reference catalyst(a) 3DM catalyst; (b) reference catalyst

    表  1  载体与催化剂的物理吸附及抗压强度测试

    Table  1  Results of physical adsorption and crushing strength of 3DM support 3DM catalyst and reference catalyst

    Macroporous supportMacroporous catalystReference supportReference catalyst
    Specific surface area/(m2·g−1)174150169153
    Pore volume/(m3·g−1)1.210.920.850.67
    Crushing strength/(N·mm−1)16.517.516.216.8
    下载: 导出CSV

    表  2  3DM催化剂与参比剂的酸强度分布

    Table  2  Acid strength distributions of 3DM catalyst and reference catalyst

    Weak acid(160−250 ℃)/%Medium acid(250−450 ℃)/%Strong acid(> 450 ℃)/%
    3DM catalyst67.3527.155.50
    Reference catalyst63.7428.907.36
    下载: 导出CSV

    表  3  3DM催化剂与参比剂的渣油加氢催化性能评价

    Table  3  Evaluation results of catalytic performance of 3DM catalyst and reference catalyst for residue hydrogenation

    Compositions w/% HDM/%HDS/%CCR/%
    MoO3NiO Ni+VNiVFe*
    3DM catalyst11.32.7 64.352.468.848.933.5
    Reference catalyst11.42.958.148.961.742.926.7
    * removal of Fe was not investigated because of the introduction of Fe into the products due to pipeline corrosion
    下载: 导出CSV
  • [1] 谭青峰, 聂士新, 程涛, 赵元生, 夏恩冬, 崔瑞利, 赵愉生, 姚元勋. PHR系列固定床渣油加氢催化剂的研制开发与工业应用[J]. 化工进展,2018,37(10):3867−3872.

    TAN Qing-feng, NIE Shi-xin, CHENG Tao, ZHAO Yuan-sheng, XIA En-dong, HUO Rui-li, ZHAO Yu-sheng, YAO Yuan-xun. Development and application of PHR fixed-bed residue hydrotreating catalysts[J]. Chem Ind Eng Prog,2018,37(10):3867−3872.
    [2] 程涛, 赵愉生, 谭青峰. PHR系列固定床渣油加氢脱金属催化剂的研制[J]. 化工进展,2016,35(10):3219−3225.

    CHENG Tao, ZHAO Yu-sheng, TAN Qing-feng, HUO Rui-li. Development of PHR fix-bed residue hydrodemetallization catalysts[J]. Chem Ind Eng Prog,2016,35(10):3219−3225.
    [3] YAO S, CHANGFENG Y, CHANGFENG Y. Engineering the hierarchical pore structures and geometries of hydrodemetallization catalyst pellets[J]. Ind Eng Chem Res,2019,58(23):9829−9837. doi: 10.1021/acs.iecr.9b01174
    [4] 杨卫亚, 凌凤香, 张会成, 王少军, 沈智奇. 具有三维贯通多级孔道结构大孔氧化铝的制备与表征[J]. 燃料化学学报,2018,46(5):558−563. doi: 10.3969/j.issn.0253-2409.2018.05.007

    YANG Wei-ya, LING Feng-xiang, ZHANG Hui-cheng, WANG Shao-jun, SHEN Zhi-qi. Synthesis and characterization of hierarchically porous alumina with three-dimensional interconnected pore structure[J]. J Fuel Chem Technol,2018,46(5):558−563. doi: 10.3969/j.issn.0253-2409.2018.05.007
    [5] 白秀玲, 马波, 杨卫亚, 凌凤香. 三维贯通大孔氧化铝的制备与表征[J]. 当代化工,2013,42(3):253−255. doi: 10.3969/j.issn.1671-0460.2013.03.003

    BAI Xiu-ling, MA Bo, YANG Wei-ya, LING Feng-xiang. Synthesis and characterization of macroporous Al2O3 with interconnected three-dimensional structure[J]. Contemp Chem Ind,2013,42(3):253−255. doi: 10.3969/j.issn.1671-0460.2013.03.003
    [6] 王鼎聪. 纳米自组装合成大孔容介孔氧化铝[J]. 中国科学(B辑: 化学),2009,39(5):420−431.

    WANG Ding-cong. Mesoporous aluminium oxide support with large pore volume by nanoself-assembly[J]. Sci China Ser B: Chem,2009,39(5):420−431.
    [7] 王鼎聪, 刘纪端. 贯通性框架式渣油脱金属催化剂氧化铝载体的研究[J]. 石油炼制与化工,2010,41(1):31−35. doi: 10.3969/j.issn.1005-2399.2010.01.007

    XU Xiao-ming, WANG Ding-cong, YANG Gang, WANG Gang. A research of alumina carrier with penetrating pore structure for asphaltene micelles to diffuse[J]. Petprocess Petrochem,2010,41(1):31−35. doi: 10.3969/j.issn.1005-2399.2010.01.007
    [8] 张凯, 王鼎聪. 第三次纳米自组装制备大孔主客体催化材料[J]. 中国科学: 化学,2013,43(11):1548−1556.

    ZHANG Kai, WANG Ding-cong. Preparation of macroporous host-guest catalytic material using third nano self-assembly[J]. Sci China Ser B: Chem,2013,43(11):1548−1556.
    [9] TAKAHASHI R, ONISHI A, SATOM F. Preparation of bimodal porous alumina using propylene glycol oligomers[J]. J Eur Ceram Soc,2017,125(10):742−746. doi: 10.2109/jcersj2.17062
    [10] TOKUDOME Y, FUJITA K, NAKANISHI K, MIURA K, HIRAO K. Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation[J]. Chem Mater,2007,19(14):3393−3398. doi: 10.1021/cm063051p
    [11] ABSI-HALABI M, STANISLAUS A, AL-MUGHNI T. Hydroprocessing of vacuum residues: relation between catalyst activity, deactivation and pore size distribution[J]. Fuel,1995,74(8):1211−1215. doi: 10.1016/0016-2361(94)00042-P
    [12] LIU T, JU L, ZHOU Y, QIANG W, DING S, ZHOU W, LUO X, JIANG S, TAO X. Effect of pore size distribution (PSD) of Ni-Mo/Al2O3 catalysts on the Saudi Arabia vacuum residuum hydrodemetallization (HDM)[J]. Catal Today,2016,271:179−187. doi: 10.1016/j.cattod.2015.07.045
    [13] YANG W, LING F, ZHANG H, WANG S, SHEN Z. Synthesis and characterization of robust γ-alumina monolith with hierarchical pore structure[J]. Chem Lett,2019,48(10):1274−1277. doi: 10.1246/cl.190368
    [14] 杨卫亚, 王刚, 凌凤香, 隋宝宽, 张会成. 三维贯通结构大孔氧化铝的制备与性质表征[J]. 石油化工,2019,48(7):661−665. doi: 10.3969/j.issn.1000-8144.2019.07.002

    YANG Wei-ya, WANG Gang, LING Feng-xiang, SUI Bao-kuan, ZHANG Hui-cheng. Preparation and characterization of macroporous alumina with three-dimensionally interconnected structure[J]. PetrochemTechnol,2019,48(7):661−665. doi: 10.3969/j.issn.1000-8144.2019.07.002
    [15] 杨卫亚, 王刚, 凌凤香, 隋宝宽, 张会成, 王少军. 三维贯通大孔氧化铝的孔道改性、表征及转化机制[J]. 燃料化学学报,2019,47(6):745−750. doi: 10.3969/j.issn.0253-2409.2019.06.012

    YANG Wei-ya, LING Feng-xiang, WANG Gang, SUI Bao-kuan, ZHANG Hui-cheng, WANG Shao-jun. Macroporous alumina with three-dimensionally interconnected pore structure: synthesis, characterization and transformation mechanism[J]. J Fuel Chem Technol,2019,47(6):745−750. doi: 10.3969/j.issn.0253-2409.2019.06.012
    [16] 李波, 邵玲玲. 氧化铝、氢氧化铝的XRD鉴定[J]. 无机盐工业,2008,231(2):54−57. doi: 10.3969/j.issn.1006-4990.2008.02.019

    LI Bo, SHAO Ling-ling. Appraisal of alumina and aluminium hydroxide by XRD[J]. Inorg Chem Int,2008,231(2):54−57. doi: 10.3969/j.issn.1006-4990.2008.02.019
    [17] 周同娜, 尹海亮, 韩姝娜, 柴永明, 柳云骐, 刘晨光. 不同磷含量对NiMoP/Al2O3加氢处理催化剂的影响[J]. 燃料化学学报,2009,37(3):330−334. doi: 10.3969/j.issn.0253-2409.2009.03.013

    ZHOU Tong-na, YIN Hai-liang, HAN Shu-na, CAI Yong-ming, LIU Yun-qi, LIU Chen-guang. Influences of different phosphorus contents on NiMoP/A12O3 hydrotreating catalysts[J]. J Fuel Chem Technol,2009,37(3):330−334. doi: 10.3969/j.issn.0253-2409.2009.03.013
    [18] YING Z, GEVERT B, OTTERSTEDT J. Large-pore catalysts for hydroprocessing of residual oils[J]. Ind Eng Chem Res,1995,34(5):1566−1571. doi: 10.1021/ie00044a008
    [19] BAMDADI M, DR. BOZORG A, DR. TAVASOLI A, SAEID S, MAHMOUD A. Synthesis of meso/macroporous γ-alumina via aluminum pellet with controllable porosity: ammonium bicarbonate influences through drying and calcination steps[J]. Chem-Eur J,2019,4(19):5872−5879.
    [20] ISHIHARA A. Preparation and reactivity of hierarchical catalysts in catalytic cracking[J]. Fuel Process Technol,2019,194:106−116.
    [21] 徐景东, 车晓瑞, 王娇红. 孔道结构对渣油加氢脱金属催化剂活性的影响[J]. 工业催化,2018,240(9):57−60. doi: 10.3969/j.issn.1008-1143.2018.09.011

    XU Jing-dong, CHE Xiao-rui, WANG Jiao-hong. Effect of pore structure on activity of resid hydrodemetallization catalysts[J]. Ind Catal,2018,240(9):57−60. doi: 10.3969/j.issn.1008-1143.2018.09.011
    [22] ZHANG M, YANG T, ZHAO R, LIU C. Effect of solid-state synthesized alumina properties on the Structure and catalytic performance of NiMo catalyst in hydrodesulfurization[J]. Appl Catal A: Gen,2013,468:327−333. doi: 10.1016/j.apcata.2013.09.008
    [23] PARK J, AL-MUTAIRI A, MARAFI A, MOCHIDA I, YOON S-H, MA X. Behaviors of metal compounds during hydrodemetallization of atmospheric residue[J]. J Ind Eng Chem,2016,40:34−39. doi: 10.1016/j.jiec.2016.05.032
    [24] GARCIA-MONTOTO V, VERDIER S, MAROUN Z, EGEBERG R, TIEDJE J-L, SANDERSEN S A, ZEUTHEN P, BOUYSSIERE B AL. Understanding the removal of V, Ni and S in crude oil atmospheric residue hydrodemetallization and hydrodesulfurization[J]. Fuel Process Technol,2020,201:106341−106348. doi: 10.1016/j.fuproc.2020.106341
    [25] HERWIG J, TITUS J, KULLMANN J, NICOLE W, THOMAS H, ROGER G, DIRK E. Hierarchically Structured porous spinels via an epoxide-mediated sol–gel process accompanied by polymerization-induced phase separation[J]. ACS Omega,2018,3(1):1201−1212. doi: 10.1021/acsomega.7b01621
    [26] SUN M, ZHAO T, LI Z, MA Z, WANG J, LI F. Sol-gel synthesis of macro-mesoporous Al2O3-SiO2-TiO2 monoliths via phase separation Route[J]. Ceram Int,2016,42(14):15926−15932. doi: 10.1016/j.ceramint.2016.07.068
    [27] PARKHOMCHUK E V, FEDOTOV K V, SEMEYKINA VS, LYSIKOV A I. Polystyrene microsphere-template method for textural design of alumina – an effective catalyst support For macromolecule conversion[J]. Catal Today,2020,353:180−186. doi: 10.1016/j.cattod.2019.07.027
    [28] VIDRUK R, LANDAU M V, HERSKOWITZ M, EZERSKY V, GOLDBOURT A. Control of surface acidity and catalytic activity of γ-Al2O3 by adjusting the nanocrystalline contact interface[J]. J Catal,2011,282(1):215−227. doi: 10.1016/j.jcat.2011.06.018
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  81
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-24
  • 修回日期:  2021-04-12
  • 网络出版日期:  2021-05-17
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回