留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属有机骨架材料在二氧化碳加氢中的应用

周程 南永永 查飞 田海锋 唐小华 常玥

周程, 南永永, 查飞, 田海锋, 唐小华, 常玥. 金属有机骨架材料在二氧化碳加氢中的应用[J]. 燃料化学学报(中英文), 2021, 49(10): 1444-1457. doi: 10.1016/S1872-5813(21)60097-X
引用本文: 周程, 南永永, 查飞, 田海锋, 唐小华, 常玥. 金属有机骨架材料在二氧化碳加氢中的应用[J]. 燃料化学学报(中英文), 2021, 49(10): 1444-1457. doi: 10.1016/S1872-5813(21)60097-X
ZHOU Cheng, NAN Yong-yong, ZHA Fei, TIAN Hai-feng, TANG Xiao-hua, CHANG Yue. Application of metal-organic frameworks in CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1444-1457. doi: 10.1016/S1872-5813(21)60097-X
Citation: ZHOU Cheng, NAN Yong-yong, ZHA Fei, TIAN Hai-feng, TANG Xiao-hua, CHANG Yue. Application of metal-organic frameworks in CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1444-1457. doi: 10.1016/S1872-5813(21)60097-X

金属有机骨架材料在二氧化碳加氢中的应用

doi: 10.1016/S1872-5813(21)60097-X
基金项目: 国家自然科学基金(21865031)资助
详细信息
    通讯作者:

    E-mail: zhafei@nwnu.edu.cn

  • 中图分类号: TQ 426.94

Application of metal-organic frameworks in CO2 hydrogenation

Funds: The project was supported by National Natural Science Foundation of China (21865031)
  • 摘要: 大气中二氧化碳(CO2)浓度的急剧增加引起了人们的关注,并提出了许多将CO2转化为高价值化学品的策略。金属有机框架材料(MOFs)由于其独特的孔隙率、大的比表面积、丰富的孔结构、多活性中心、良好的稳定性和可回收性,可用于二氧化碳的捕获和催化转化。基于晶体多孔材料的金属有机骨架(MOF)设计和合成的各种功能纳米材料可以作为多相催化剂或载体/前体来应对这些挑战。在本文中,笔者将主要关注MOFs在催化二氧化碳加氢领域的最新研究进展,包括催化加氢制备一氧化碳、甲烷、甲酸、甲醇和烯烃,分析了基于MOFs的催化剂的合成方法和提高催化活性的原因。介绍了提高新型MOF材料的催化活性和探索新的CO2转化可行的策略。讨论了MOF型催化剂在CO2化学转化中的主要挑战和机遇,对本研究领域中进一步的发展进行了简要的展望。
  • FIG. 964.  FIG. 964.

    FIG. 964.  FIG. 964.

    图  1  ZIF-8热解合成Cu/Zn@C示意图[29]

    Figure  1  Pyrolysis of ZIF-8 to produce hierarchical Cu/Zn@C[29]

    图  2  (a)Pt/Au@Pd@UiO-66纳米复合材料的合成过程;(b)Pt/Au@Pd@UiO-66在不同温度下催化CO2还原;(c)Au@Pd@UiO-66和Pt/Au@Pd@UiO-66的CO选择性[30]

    Figure  2  (a): Synthesis process of Pt/Au@Pd@UiO-66 nanocomposites; (b): CO2-reduction catalyzed by Pt/Au@Pd@UiO-66 at different temperatures; (c): CO product selectivity of Au@Pd@UiO-66 and Pt/Au@Pd@UiO-66[30]

    图  3  (a)M/ZIF-8-C的CO2转化率;(b)CO、CH4的选择性[31]

    Figure  3  (a): CO2 conversion; (b): selectivity of CO, and CH4 on M/ZIF-8-C[31]

    图  4  (a)xNi@MIL-101(DSM)合成示意图;(b)CO2甲烷化在20Ni@MIL-101(DSM)催化剂上的反应机理[39]

    Figure  4  (a): Schematic illustration on the synthesis of xNi@MIL-101(DSM) catalysts; (b): The proposed possible reaction mechanism of CO2 methanation over 20Ni@MIL-101(DSM) catalyst[39]

    图  5  Ru/UiO-66合成和原位转化为MOF衍生催化剂的示意图[40]

    Figure  5  Scheme of synthesis and in situ transformation Ru/UiO-66 to MOF derived catalyst[40]

    图  6  添加不同含量十六烷基三甲基溴化铵的催化剂的CO2转化率[41]

    Figure  6  CO2 conversion on catalysts with different content of CATB[41] (with permission from ACS)

    图  7  协同和逐步机理的CO2加氢能谱[44]

    Figure  7  Energy profile of the CO2 hydrogenation for concerted and stepwise systems[44]

    图  8  (a)LPs功能化UiO-66的八面体笼的BDC配体(b)UiO-66-X中CO2加氢的反应能垒与H2在UiO-66-X中的吸附能的关系[45]

    Figure  8  (a): LPs functionalized BDC ligand of the octahedral cage of UiO-66; (b): Calculated reaction energy barriers for CO2 hydrogenation in UiO-66-X as a function of the adsorption energies of H2 in UiO-66-X[45]

    图  9  以ZIF-8为牺牲模板制备CuZn-BTC的形成机理示意图[49]

    Figure  9  Schematic diagram of the formation mechanism of CuZn-BTC prepared with ZIF-8 as a sacrificial template[49]

    图  10  (a) ${\rm{Cu}} \subset {\rm{UiO}} {\text{-}} 66$活性位点的图示;(b)${\rm{Cu}} \subset {\rm{UiO}} {\text{-}} 66 $和Cu/ZnO/Al2O3在各不同反应温度下产物的TOFs;(c)在${\rm{Cu}} \subset {\rm{UiO}} {\text{-}} 66 $上和Cu在UiO-66上甲醇的初始TOFs;(d)${\rm{Cu}} \subset {\rm{UiO}} {\text{-}} 66 $(UiO-66内部的单个CuNC)的TEM;(e)UiO-66上Cu的TEM[50]

    Figure  10  (a) Illustration of active site of $ {\rm{Cu}} \subset {\rm{UiO}} {\text{-}} 66 $ catalyst; (b) TOFs of product formation over ${\rm{Cu}} \subset {\rm{UiO}} {\text{-}} 66$ catalyst and Cu/ZnO/Al2O3 catalyst as various reaction temperatures; (c) Initial TOFs of methanol formation over ${\rm{Cu}} \subset {\rm{UiO}} {\text{-}} 66$ and Cu on UiO-66 ; (d) TEM images of ${\rm{Cu}} \subset {\rm{UiO}} {\text{-}} 66$(single Cu NC inside UiO-66); (e) TEM images of Cu on UiO-66[50]

    图  11  (a)合成后金属化的UiO-bpy原位还原制备CuZn@UiO-bpy示意图;(b)CH3OH的时空产率随在反应时间的变化;(c)产物的选择性随反应时间的变化;(d)MOF中封装的活性位点以及各种表面位点在催化CO2加氢中的功能[51]

    Figure  11  (a): Preparation of CuZn@UiO-bpy via in situ reduction of post-synthetically metalized UiO-bpy; (b): STY of CH3OH vs reaction time on stream; (c) Selectivity of product vs reaction time; (d) Schematic showing the encapsulated active sites in MOF and the functions of the various surface sites in catalytic CO2 hydrogenation [51] (with permission from ACS)

    图  12  PZ8-t催化剂的制备和Pd-ZnO@ZIF-8催化CO2加氢制甲醇的示意图[54]

    Figure  12  Schematic illustration of the preparation process of the PZ8-T and the preparation procedure of Pd-ZnO@ZIF-8 for CO2 hydrogenation to methanol [54]

    图  13  在不同催化剂上的二氧化碳转化率和产物选择性[58]

    Figure  13  CO2 conversion rate and selectivity on different catalysts[58] (with permission from Elsevier)

    图  14  Fe基Basolite F300催化剂合成机理与形态表征[59]

    Figure  14  Synthesis mechanism and morphology of Fe-based Basolite F300[59] (with permission from ACS)

  • [1] 梁兵连, 段洪敏, 侯宝林, 苏雄, 黄延强, 王爱琴, 王晓东, 张涛. 二氧化碳加氢合成低碳烯烃的研究进展[J]. 化工进展,2015,34(10):3746−3754.

    LIANG Bing-lian, DUAN Hong-min, HOU Bao-lin, SU Xiong, HUANG Yan-qiang, WANG Ai-qin, WANG Xiao-dong, ZHANG Tao. Research progress on synthesis of light olefins by hydrogenation of carbon dioxide[J]. Chem Ind Eng Prog,2015,34(10):3746−3754.
    [2] LIU Q, WU L, JACKSTELL R, BELLER M. Using carbon dioxide as a building block in organic synthesis[J]. Nat Commun,2015,6:5933. doi: 10.1038/ncomms6933
    [3] CHU S. Carbon capture and sequestration[J]. Science,2009,325(5948):15−99.
    [4] DONG J, CUI P, SHI P F, CHENG P, ZHAO B. Ultra strong alkali-resisting lanthanide-zeolites assembled by [Ln60] nanocages[J]. J Am Chem Soc,2015,137(51):15988−15991. doi: 10.1021/jacs.5b10000
    [5] KOSSEV K, KOSEVA N, TROEV K. Calcium chloride as co-catalyst of onium halides in the cycloaddition of carbon dioxide tooxiranes[J]. J Mol Catal A: Chem,2003,194(1-2):29−37. doi: 10.1016/S1381-1169(02)00513-7
    [6] XIE Y, WANG T T, LIU X H, ZOU K, DENG W Q. Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer[J]. Nat Commun,2013,4(1):1−7.
    [7] CUI G K, WANG J J, ZHANG S J. Active chemisorption sites in functionalized ionic liquids for carbon capture[J]. Chem Soc Rev,2016,45(15):4307−4339. doi: 10.1039/C5CS00462D
    [8] SUN Q, JIN Y Y, AGUILA B, MENG X J, MA S Q, XIAO F S. Porous ionic polymers as a robust and efficient platform for capture and chemical fixation of atmospheric CO2[J]. ChemSusChem,2017,10(6):1160−1165. doi: 10.1002/cssc.201601350
    [9] FENG X, DING X, JIANG D L. Covalent organic frameworks[J]. Chem Commun,2012,41(18):6010−6022.
    [10] LIU Y, GHIMIRE P, JARONIEC M J. Copper benzene-1, 3, 5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents[J]. J Colloid Interface Sci,2019,535:122−132. doi: 10.1016/j.jcis.2018.09.086
    [11] LI L Y, WANG J W, ZHANG Z G, YANG Q W, SU B G, BAO Z B, REN Q L. Inverse adsorption separation of CO2/C2H2 mixture in cyclodextrin-based metal-organic frameworks[J]. ACS Appl Mater Interfaces,2018,11(2):2543−2550.
    [12] WANG X, TAO Q, BAO S S, ZHANG Y C, SHEN X, ZHENG L M, ZHU D R. Facile synthesis of a water stable 3D Eu-MOF showing high proton conductivity and its application as a sensitive luminescent sensor for Cu2+ ions[J]. J Mater Chem A,2016,4(42):16484−16489. doi: 10.1039/C6TA06792A
    [13] BAI Y Z, YI B L, LI J, JIANG S F, ZHANG H J, SHAO Z G, SONG Y Z. A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework[J]. Chin J Catal,2016,37(7):1127−1133. doi: 10.1016/S1872-2067(15)61104-4
    [14] CUI P, MA Y G, LI H H, ZHANG B, LI J R, CHENG P, BALBUENA P B, ZHOU H C. Multipoint interactions enhanced CO2 uptake: A zeolite-like zinc-tetrazole framework with 24-nuclear zinc cages[J]. J Am Chem Soc,2012,134(46):18892−18895. doi: 10.1021/ja3063138
    [15] DING M, FLAIG R W, JIANG H L, YAGHI O M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials[J]. Chem Soc Rev,2019,48(10):2783−2828. doi: 10.1039/C8CS00829A
    [16] 张维中, 温月丽, 宋镕鹏, 张倩, 王斌, 黄伟. 金属有机骨架材料应用于二氧化碳加氢催化反应的研究进展[J]. 天然气化工(C1化 学与化工),2020,45(1):113−119+128.

    ZHANG Wei-zhong, WEN Yue-li, SONG Rong-peng, ZHANG Qian, WANG Bin, HUANG Wei. Research progress in the application of metal organic framework materials to the catalytic reaction of carbon dioxide hydrogenation[J]. Natural Gas Chem Ind (C1 Chem Chem Eng),2020,45(1):113−119+128.
    [17] MAINA J W, POZO-GONZALO C, KONG L, SCHÜTZ J, HILL M & DUMÉE L F. Metal organic framework based catalysts for CO2 conversion[J]. Mater Horiz,2017,4(3):345−361. doi: 10.1039/C6MH00484A
    [18] OLAJIRE A A. Synthesis chemistry of metal-organic frameworks for CO2 capture and conversion for sustainable energy future[J]. Renewable Sustainable Energy Rev,2018,92:570−607. doi: 10.1016/j.rser.2018.04.073
    [19] 赵建波, 袁海丰, 谢冰, 葛黎明, 廖小伟, 王馨, 李晓蒙. 基于金属有机框架的催化应用研究进展[J]. 化工新型材料,2020,48(2):50−54.

    ZHAO Jian-bo, YUAN Hai-feng, XIE Bing, GE Li-ming, LIAO Xiao-wei, WANG Xin, LI Xiao-meng. Research progress in catalytic applications based on metal organic frameworks[J]. New Chem Mater,2020,48(2):50−54.
    [20] HE H, PERMAN J A, ZHU G, MA S. Metal-organic frameworks for CO2 chemical transformations[J]. Small,2016,12(46):6309−6324. doi: 10.1002/smll.201602711
    [21] HOU S L, DONG J, ZHAO B. Formation of C-X bonds in CO2 chemical fixation catalyzed by metal-organic frameworks[J]. Adv Mater,2020,32(3):1806163. doi: 10.1002/adma.201806163
    [22] YANG H, ZHANG C, GAO P, WANG H, Li X P, ZHONG L S, WEI W, SUN Y H. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catal Sci Technol,2017,7(20):4580−4598. doi: 10.1039/C7CY01403A
    [23] KULD S, THORHAUGE M, FALSIG H, ELKJÆR C F, HELVEG S, CHORKENDORFF I, SEHESTED J. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis[J]. Science,2016,352:969−974. doi: 10.1126/science.aaf0718
    [24] HA NN, HA NTT, LONG NB, CAM LM. Conversion of carbon monoxide into methanol on alumina-supported cobalt catalyst: role of the support and reaction mechanism-A theoretical study[J]. Catalysts,2019,9(1):6.
    [25] CHAKRABORTY S, RENE E R, LENS P N L, VEIGA M C, KENNES C. Enrichment of a solventogenic anaerobic sludge converting carbon monoxide and syngas into acids and alcohols[J]. Bioresour Technol,2019,272:130−136.
    [26] ZHANG TZ, TROLL C, RIEGER B, KINTRUP J, SCHLÜTER O F K, WEBER R. Reaction kinetics of oxy-chlorination of carbon monoxide to phosgene based on copper(II) chloride[J]. Appl Catal A: Gen,2009,357(1):51−57. doi: 10.1016/j.apcata.2008.12.035
    [27] ZHU Y, PAN X, JIAO F, LI J, YANG J H, Ding M Z, HAN Y, LIU Z, BAO X H. Role of Manganese Oxide in Syngas Conversion to Light Olefins[J]. ACS Catal,2017,7(4):2800−2804. doi: 10.1021/acscatal.7b00221
    [28] XU H, LI Y, LUO X, GE J. Monodispersed gold nanoparticles supported on a zirconium-based porous metal-organic framework and their high catalytic ability for the reverse water–gas shift reaction[J]. Chem Commun,2017,53(56):7953−7956.
    [29] ZHANG J, AN B, HONG Y H, MENG Y P, HU X F, WANG C, LIN J D, LIN W B & WANG Y. Pyrolysis of metal–organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation[J]. Mater Chem Front,2017,1(11):2405−2409. doi: 10.1039/C7QM00328E
    [30] ZHENG Z, XU H, XU Z, GE J. A monodispersed spherical Zr-based metal-organic framework catalyst, Pt/Au@ Pd@UiO-66, comprising an Au@Pd core-shell encapsulated in a UiO-66 center and its highly selective CO2 hydrogenation to produce CO[J]. Small,2018,14(5):1702812. doi: 10.1002/smll.201702812
    [31] LI Y H, CAI X H, CHEN S J, ZHANG H, KEVIN H L, HONG J Q, CHEN B H, KUO D H, WANG W J. Highly dispersed metal carbide on ZIF-derived pyridinic-N-doped carbon for CO2 enrichment and selective hydrogenation[J]. ChemSusChem,2018,11(6):1040−1047. doi: 10.1002/cssc.201800016
    [32] GUTTERØD E S, ØIEN-ØDEGAARD S, BOSSERS K, NIEUWELINK A E, MANZOLI M, BRAGLIA L, LAZZARINI A, BORFECCHIA E, AHMADIGOLTAPEH S, BOUCHEVREAU B, LØNSTAD-BLEKEN B T, HENRY R, LAMBERTI C, BORDI S, WECKHUYSEN B M, LILLERUD K P & OLSBYE U. CO2 Hydrogenation over Pt-Containing UiO-67 Zr-MOFs-The Base Case[J]. Ind Eng Chem Res,2017,56(45):13206−13218. doi: 10.1021/acs.iecr.7b01457
    [33] THAMPI K R, KIWI J, GRAETZEL M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure[J]. Nature,1987,327(6122):506−508. doi: 10.1038/327506a0
    [34] CHEN X, SU X, DUAN H, LIANG, B, HUANG Y& ZHANG T. Catalytic performance of the Pt/TiO2 catalysts in reverse water gas shift reaction: Controlled product selectivity and a mechanism study[J]. Catal Today,2017,281:312−318. doi: 10.1016/j.cattod.2016.03.020
    [35] 黄佟霞. Ni/膨润土催化剂的制备及其催化CO2甲烷化的研究[D]. 南宁: 广西大学, 2018.

    HUANG Tong-xia. Preparation of Ni/Bentonite catalyst and its catalytic CO2 methanation[D]. Nanning: Guangxi University, 2018.
    [36] ABDEL-MAGEED A M, WIDMANN D, OLESEN S E, HORKENDORFF I, BISKUPEK J, BEHM R J. Selective CO methanation on Ru/TiO2 catalysts: Role and influence of metal-support interactions[J]. ACS Catal,2015,5(11):6753−6763. doi: 10.1021/acscatal.5b01520
    [37] LIN X H, WANG S B, TU W G, HU Z B, DING Z X, HOU Y D, XU R, DAI W X. MOF-derived hierarchical hollow spheres composed of carbon-confined Ni nanoparticles for efficient CO2 methanation[J]. Catal Sci Technol,2019,9(3):731−738. doi: 10.1039/C8CY02329H
    [38] ZHEN W, LI B, LU G, MA, J. Enhancing catalytic activity and stability for CO2 methanation on Ni–Ru/γ-Al2O3 via modulating impregnation sequence and controlling surface active species[J]. RSC Adv,2014,4(32):16472−16479. doi: 10.1039/C3RA47982J
    [39] ZHEN W, GAO F, TIAN B, DING P, DENG Y B, ZHEN L, GAO H B, LU G X. Enhancing activity for carbon dioxide methanation by encapsulating (111) facet Ni particle in metal-organic frameworks at low temperature[J]. J Catal,2017,348:200−211. doi: 10.1016/j.jcat.2017.02.031
    [40] LIPPI R, HOWARD S C, BARRON H, EASTON C D, MADSEN I C, WADDINGTON L J, VOGT C, HILL M R, SUMBY C J, DOONAN C J, KENNEDY D F. Highly active catalyst for CO2 methanation derived from a metal organic framework template[J]. J Mater Chem A,2017,5(25):12990−12297. doi: 10.1039/C7TA00958E
    [41] LI W H, ZHANG A F, JIANG X, CHEN C, LIU Z G, SONG C S, GUO X W. Low temperature CO2 methanation: ZIF-67-derived Co-based porous carbon catalysts with controlled crystal morphology and size[J]. ACS Sustainable Chem Eng,2017,5(9):7824−7831. doi: 10.1021/acssuschemeng.7b01306
    [42] WANG W H, HIMEDA Y, MUCKERMAN J T, MANBECK G F, FUJITA E. CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo-and Electrochemical CO2 Reduction[J]. Chem Rev,2015,115(23):12936−12973. doi: 10.1021/acs.chemrev.5b00197
    [43] LOGES B, BODDIEN A, GÄRTNER F, JUNGE H, BELLER M. Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials[J]. Top Catal,2010,53(13/14):902−914. doi: 10.1007/s11244-010-9522-8
    [44] MAIHOM T, WANNAKAO S, BOEKFA B, LIMTRAKUL J. Production of formic acid via hydrogenation of CO2 over a copper-alkoxide-functionalized MOF: A mechanistic study[J]. J Phys Chem C,2013,117(34):17650−17658. doi: 10.1021/jp405178p
    [45] YE J, JOHNSON J K. Design of Lewis pair-functionalized metal organic frameworks for CO2 hydrogenation[J]. ACS Catal,2015,5(5):2921−2928. doi: 10.1021/acscatal.5b00396
    [46] YE J, JOHNSON J K. Screening Lewis pair moieties for catalytic hydrogenation of CO2 in functionalized UiO-66[J]. ACS Catal,2015,5(10):6219−6229. doi: 10.1021/acscatal.5b01191
    [47] WANG S, HOU S, WU C, ZHAO Y, MA X. RuCl3 anchored onto post-synthetic modification MIL-101(Cr)-NH2 as heterogeneous catalyst for hydrogenation of CO2 to formic acid[J]. Chin Chem Lett,2019,30(2):398−402. doi: 10.1016/j.cclet.2018.06.021
    [48] ZHANG C, LIAO P, WANG H, SUN J, GAO P. Preparation of novel bimetallic CuZn-BTC coordination polymer nanorod for methanol synthesis from CO2 hydrogenation[J]. Mater Chem Phys,2018,215:211−220. doi: 10.1016/j.matchemphys.2018.05.028
    [49] TSHUMA P, MAKHUBELA B C E, ÖHRSTRÖM L, BOURNE S A, CHATTERJEE N, BEAS I N, DARKWA J, MEHLANA G. Cyclometalation of lanthanum(iii) based MOF for catalytic hydrogenation of carbon dioxide to formate[J]. RSC Adva.,2020,10(6):3593−3605. doi: 10.1039/C9RA09938G
    [50] RUNGTAWEEVORANIT B, BAEK J, ARAUJO J R, ARCHANJO B S, CHOI K M, YAGHI O M, SOMORJAI G A. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol[J]. Nano Lett,2016,16(12):7645−7649. doi: 10.1021/acs.nanolett.6b03637
    [51] AN B, ZHANG J, CHENG K, JI P, WANG C, LIN W. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2[J]. J Am Chem Soc,2017,139(10):3834−3840. doi: 10.1021/jacs.7b00058
    [52] ZHANG X, SUN J, WEI G, LIU Z, YANG H, WANG K, FEI H. In Situ generation of an n-heterocyclic carbene functionalized metal-organic framework by postsynthetic ligand exchange: efficient and selective hydrosilylation of CO2[J]. Angew Chem Int Ed,2019,58(9):2844−2849. doi: 10.1002/anie.201813064
    [53] YIN Y, HU B, LI X, ZHOU X, HONG X, LIU G. Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO2 to methanol[J]. Appl Catal B: Environ,2018,234:143−152. doi: 10.1016/j.apcatb.2018.04.024
    [54] YE J, JOHNSON J K, Catalytic hydrogenation of CO2 to methanol in a Lewis pair functionalized MOF[J]. Catal Sci Technol, 2016, 6(24): 8392–8405.
    [55] VISCONTIC G, MARTINELLI M, FALBO L, INFANTES-MOLINAA A, LIETTIA L, FORZATTIA P, IAQUANIELLOC G, PALOC E, PICUTTID B, BRIGNOLIET F. CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst[J]. Appl Catal B: Environ,2017,200:530−542. doi: 10.1016/j.apcatb.2016.07.047
    [56] HU S, LIU M, DING F, SONG C, ZHANG G, GUO X. Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins[J]. J CO2 Util,2016,15:89−95. doi: 10.1016/j.jcou.2016.02.009
    [57] LIU J, SUN Y, JIANG X, ZHANG A, SONG C, GUO X. Pyrolyzing ZIF-8 to N-doped porous carbon facilitated by iron and potassium for CO2 hydrogenation to value-added hydrocarbons[J]. J CO2 Util,2018,25:120−127. doi: 10.1016/j.jcou.2018.03.015
    [58] LIU J, ZHANG A, LIU M, HU S, DING F, SONG C, GUO X. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. J CO2 Util,2017,21:100−107. doi: 10.1016/j.jcou.2017.06.011
    [59] RAMIREZ A, GEVERS L, BAVYKINA A, OULD-CHIKH S, GASCON J. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins[J]. ACS Catal,2018,8(10):9174−9182. doi: 10.1021/acscatal.8b02892
    [60] MÜLLER M, HERMES S, KÄHLER K, VAN DEN BERG M W, MUHLER M, FISCHER R A. Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: Properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis[J]. Chem Mater,2008,20(14):4576−4587. doi: 10.1021/cm703339h
    [61] ZHEN W, LI B, LU G, MA J. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion[J]. Chem Commun,2015,51(9):1728−1731.
    [62] YAZHI Y, BING H, LIU G L, ZHOU X H, HONG X L. ZnO@ZIF-8 core-shell structure as host for highly selective and Stable Pd/ZnO catalysts for hydrogenation of CO2 to methanol[J]. Acta Phys-Chim Sin,2019,35(3):327−336. doi: 10.3866/PKU.WHXB201803212
    [63] 赵志伟. 过渡金属催化剂的制备及二氧化碳催化加氢性能研究[D]. 合肥: 中国科学技术大学, 2018.

    Zhao Zhi-wei. Preparation of transition metal catalysts and study on performance of carbon dioxide catalytic hydrogenation[D]. Hefei: University of Science and Technology of China, 2018.
  • 加载中
图(15)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  112
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-16
  • 修回日期:  2021-04-21
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回