留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

γ-Fe2O3表面HCl对汞的吸附和氧化机理研究

周文波 牛胜利 王俊 李颖 韩奎华 王永征 路春美 朱英

周文波, 牛胜利, 王俊, 李颖, 韩奎华, 王永征, 路春美, 朱英. γ-Fe2O3表面HCl对汞的吸附和氧化机理研究[J]. 燃料化学学报(中英文), 2021, 49(11): 1716-1723. doi: 10.1016/S1872-5813(21)60098-1
引用本文: 周文波, 牛胜利, 王俊, 李颖, 韩奎华, 王永征, 路春美, 朱英. γ-Fe2O3表面HCl对汞的吸附和氧化机理研究[J]. 燃料化学学报(中英文), 2021, 49(11): 1716-1723. doi: 10.1016/S1872-5813(21)60098-1
ZHOU Wen-bo, NIU Sheng-li, WANG Jun, LI Ying, HAN Kui-hua, WANG Yong-zheng, LU Chun-mei, ZHU Ying. Study on the adsorption and oxidation mechanism of mercury by HCl over γ-Fe2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1716-1723. doi: 10.1016/S1872-5813(21)60098-1
Citation: ZHOU Wen-bo, NIU Sheng-li, WANG Jun, LI Ying, HAN Kui-hua, WANG Yong-zheng, LU Chun-mei, ZHU Ying. Study on the adsorption and oxidation mechanism of mercury by HCl over γ-Fe2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1716-1723. doi: 10.1016/S1872-5813(21)60098-1

γ-Fe2O3表面HCl对汞的吸附和氧化机理研究

doi: 10.1016/S1872-5813(21)60098-1
基金项目: 山东省重大科技创新工程(2019JZZY020305)资助
详细信息
    作者简介:

    周文波:514267024@qq.com

    通讯作者:

    E-mail:nsl@sdu.edu.cn

  • 中图分类号: TQ534

Study on the adsorption and oxidation mechanism of mercury by HCl over γ-Fe2O3 catalyst

Funds: The project was supported by the Important Project in the Scientific Innovation of Shandong Province (2019JZZY020305).
  • 摘要: 本研究采用密度泛函理论(DFT)研究了在γ-Fe2O3表面HCl对Hg0的吸附和催化氧化的作用机制。构建了Hg0、HCl、HgCl和HgCl2在γ-Fe2O3(001)表面的吸附模型,分析了HCl对γ-Fe2O3表面催化氧化Hg0的作用机理,并通过反应路径的能量分布测定,研究了γ-Fe2O3表面Hg0的氧化过程。结果表明,Hg0倾向于化学吸附在γ-Fe2O3(001)表面Feoct位。HCl在催化剂表面进行解离吸附,形成吸附态Cl和羟基,从而促进Hg0的吸附。HgCl以分子形式化学吸附在γ-Fe2O3(001)上,并作为Hg0氧化过程的中间体。HgCl2倾向在γ-Fe2O3表面上的平行吸附。同时,HCl在γ-Fe2O3(001)上氧化Hg0遵循L-H机理,即化学吸附的Hg0与解离吸附的HCl反应,且HCl对Hg0的非均相氧化通过两步反应途径进行,即Hg0 (ads)→HgCl(ads)→HgCl2(ads)。
  • FIG. 1069.  FIG. 1069.

    FIG. 1069.  FIG. 1069.

    图  1  γ-Fe2O3的晶胞

    Figure  1  Conventional cell of γ-Fe2O3

    图  2  γ-Fe2O3表面结构

    Figure  2  Structure of the γ-Fe2O3 surface

    (a): front view; (b): top view

    图  3  Hg0在γ-Fe2O3表面的优化吸附模型

    Figure  3  Optimized models of Hg0 adsorbed on γ-Fe2O3

    图  4  HCl在γ-Fe2O3表面的优化吸附模型

    Figure  4  Optimized models of HCl adsorbed on γ-Fe2O3

    图  5  Hg0在氯化γ-Fe2O3表面的优化吸附模型

    Figure  5  Optimized models of Hg0 adsorbed on chlorinated γ-Fe2O3 surface

    图  6  HgCl在γ-Fe2O3表面的优化吸附模型

    Figure  6  Optimized models of HgCl adsorbed on γ-Fe2O3

    图  7  HgCl2在γ-Fe2O3表面的优化吸附模型

    Figure  7  Optimized models of HgCl2 adsorbed on γ-Fe2O3

    图  8  γ-Fe2O3上HCl氧化Hg0的中间体、过渡态和终态的优化结构

    Figure  8  Optimized structures of intermediate, transition state and final state of Hg0 oxidation by HCl on γ-Fe2O3

    图  9  γ-Fe2O3上HCl氧化Hg0的能量分布

    Figure  9  Energy profile of Hg0 oxidation by HCl on γ-Fe2O3(001) surface

    表  1  键长的计算和文献值

    Table  1  Bond length of calculated values and literature values

    SpeciesBondBond length/ Å
    calculatedliterature
    HClr(H−Cl)1.2851.275[30]
    HgClr(Hg−Cl)2.4642.360−2.500[31]
    HgCl2r(Hg−Cl)2.2972.250−2.440[31]
    下载: 导出CSV

    表  2  Hg0在γ-Fe2O3表面吸附的优化参数

    Table  2  Optimized adsorption parameters of Hg0 adsorbed on γ-Fe2O3

    Eads/(kJ·mol−1)RHg-XΔQ/e
    1A−39.262.9190.14
    1B−24.473.1940.05
    1C−24.733.518/3.5350.08
    下载: 导出CSV

    表  3  HCl在γ-Fe2O3表面吸附的优化参数

    Table  3  Optimized adsorption parameters of HCl adsorbed on γ-Fe2O3

    Eads/(kJ·mol−1)RCl−FeRH−OΔQ/e
    2A−73.692.1920.9930.07
    2B−106.662.1690.9830.15
    下载: 导出CSV

    表  4  HgCl在γ-Fe2O3表面吸附的优化参数

    Table  4  Optimized adsorption parameters of HgCl adsorbed on γ-Fe2O3

    Eads/(kJ·mol−1)RHg−FeRCl−FeRHg−ClΔQ/e
    3A−136.922.5452.3830.03
    3B−141.252.1653.041−0.22
    3C−174.542.8852.1673.236−0.11
    3D−180.672.9262.1663.290−0.12
    下载: 导出CSV

    表  5  HgCl2在γ-Fe2O3表面吸附的优化参数

    Table  5  Optimized adsorption parameters of HgCl2 adsorbed on γ-Fe2O3

    Eads/(kJ·mol−1)RHg−FeRCl−FeΔQ/e
    4A−63.282.9562.942/2.9680.03
    4B−58.432.8812.159/2.161−0.26
    4C−27.132.7490.05
    下载: 导出CSV
  • [1] LIU J, QU W, ZHENG C G. Theoretical studies of mercury-bromine species adsorption mechanism on carbonaceous surface[J]. Proc Combust Inst,2013,34(2):2811−2819. doi: 10.1016/j.proci.2012.07.028
    [2] 杨应举, 张艾嘉, 刘晶, 王震, 余颖妮. NO对铜-锰尖晶石脱汞性能的影响机理[J]. 燃料化学学报,2020,48(12):1461−1465. doi: 10.3969/j.issn.0253-2409.2020.12.007

    YANG Ying-ju, ZHANG Ai-jia, LIU Jing, WANG Zhen, YU Ying-ni. Effect of NO on the performance of Cu-Mn spinel sorbent in the removal of Hg0 from flue gas[J]. J Fuel Chem Technol,2020,48(12):1461−1465. doi: 10.3969/j.issn.0253-2409.2020.12.007
    [3] KRABBENHOFT D P, SUNDERLAND E M. Global change and mercury[J]. Science,2013,341(6153):1457−1458.
    [4] 辛凤, 魏书洲, 张军峰, 马斯鸣, 赵永椿, 张军营. 燃煤烟气非碳基吸附剂脱汞研究进展[J]. 燃料化学学报,2020,48(12):1409−1420. doi: 10.3969/j.issn.0253-2409.2020.12.002

    XIN Feng, WEI Shu-zhou, ZHANG Jun-feng, MA Si-ming, ZHAO Yong-chun, ZHANG Jun-ying. Research progress on the removal of mercury from coal-fired flue gas by using non-carbon-based adsorbents[J]. J Fuel Chem Technol,2020,48(12):1409−1420. doi: 10.3969/j.issn.0253-2409.2020.12.002
    [5] SELIN N E. A proposed global metric to aid mercury pollution policy[J]. Science,2018,360(6389):607−609. doi: 10.1126/science.aar8256
    [6] ZHOU Z J, LIU X W, LIAO Z Q, SHAO H Z, LV C, HU Y C, XU M H. Manganese doped CeO2-ZrO2 catalyst for elemental mercury oxidation at low temperature[J]. Fuel Process Technol,2016,152:285−293. doi: 10.1016/j.fuproc.2016.06.016
    [7] STOLLE R, KOESER H, GUTBERLET H. Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants[J]. Appl Catal B: Environ,2014,144:486−497. doi: 10.1016/j.apcatb.2013.07.040
    [8] GHAREBAGHI M, HUGHES K J, PORTER R T J, POURKASHANIAN M, WILLIAMS A. Mercury speciation in air-coal and oxy-coal combustion: a modelling approach[J]. Proc Combust Inst,2011,33(2):1779−1786. doi: 10.1016/j.proci.2010.07.068
    [9] ZHOU Z J, LIU X W, ZHAO B, CHEN Z G, SHAO H Z, WANG L L, XU M H. Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants[J]. Fuel Process Technol,2015,131:99−108. doi: 10.1016/j.fuproc.2014.11.014
    [10] GAO Y, LI Z. A DFT study of the Hg0 oxidation mechanism on the V2O5-TiO2 (001) surface[J]. Mol Catal,2017,433:372−382. doi: 10.1016/j.mcat.2017.02.026
    [11] 王永兴, 黄亚继, 董璐, 袁琦, 丁守一, 程好强, 王圣, 段钰锋. Co掺杂铁基氧化物吸附剂燃煤烟气脱汞实验研究.[J]. 燃料化学学报,2020,48(7):785−794. doi: 10.3969/j.issn.0253-2409.2020.07.003

    WANG Yong-xing, HUANG Ya-ji, DONG Lu, YUAN Qi, DING Shou-yi, CHENG Hao-qiang, WANG Sheng, DUAN Yu-feng. Experimental study on mercury removal of coal-fired flue gas over Co-doped iron-based oxide sorbent[J]. J Fuel Chem Technol,2020,48(7):785−794. doi: 10.3969/j.issn.0253-2409.2020.07.003
    [12] YANG R, MEI C L, WU X S, YU X F, SHI Z Z. Mn-Cu binary metal oxides with molecular-scale homogeneity for Hg0 removal from coal-fired flue gas[J]. Ind Eng Chem Res,2019,58(41):19292−19301. doi: 10.1021/acs.iecr.9b04005
    [13] ZHOU Z J, LIU X W, ZHAO B, SHAO H Z, XU Y S, XU M G. Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature[J]. Chem Eng J,2016,288:701−710. doi: 10.1016/j.cej.2015.12.057
    [14] 陈力, 刘盛余, 吕维阳, 杨柯, 李燕. 锰负载对磁性铁氧化物吸附 Hg0 的影响[J]. 环境工程,2019,37(9):131−137.

    CHEN Li, LIU Sheng-yu, LV Wei-yang, YANG Ke, LI Yan. Effect of manganese loading on zero valent mercury adsorption on magnetic iron oxides[J]. Environ Eng,2019,37(9):131−137.
    [15] WANG C, ZHANG X F, MEI J, HONG Q Q, YANG S J. Recovering gaseous Hg0 using sulfureted phosphotungstic acid modified γ-Fe2O3 from power plants burning Hg-rich coal for centralized control[J]. J Hazard Mater,2021,407:124381.
    [16] 邹思捷. 改性钛磁赤铁矿控制燃煤烟气零价汞排放的研究[D]. 南京: 南京理工大学, 2018.

    ZOU Si-jie. Removal of elemental mercury from the flue gas by H2S-modified iron-titanium oxide compounds[D]. Nanjing: Nanjing University of Science and Technology, 2018.
    [17] GALBREATH K C, ZYGARLICKE C J, TIBBETTS J E, SCHULZ R L, DUNHAM G E. Effects of NOx, α-Fe2O3, γ-Fe2O3, and HCl on mercury transformations in a 7-kW coal combustion system[J]. Fuel Process Technol,2005,86(4):429−448. doi: 10.1016/j.fuproc.2004.03.003
    [18] YANG S J, GUO Y F, YAN N Q, QU Z, XIE J K, YANG C, JIA J P. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures[J]. J Hazard Mater,2011,186(1):508−515. doi: 10.1016/j.jhazmat.2010.11.034
    [19] YANG S J, YAN N Q, GUO Y F, WU D Q, HE H P, QU Z, LI J F, ZHOU Q, JIA J P. Gaseous elemental mercury capture from flue gas using magnetic nanosized (Fe3−xMnx)1−δO4[J]. Environ Sci Technol,2011,45(4):1540−1546.
    [20] LIU T, XUE L C, GUO X, HUANG Y, ZHENG C G. DFT and experimental study on the mechanism of elemental mercury capture in the presence of HCl on α-Fe2O3(001)[J]. Environ Sci Technol,2016,50(9):4863−4868. doi: 10.1021/acs.est.5b06340
    [21] LIU Z, LIU D Y, ZHAO B T, FENG L, NI M G, JIN J. Mercury removal based on adsorption and oxidation by fly ash: A review[J]. Energy Fuels,2020,34(10):11840−11866. doi: 10.1021/acs.energyfuels.0c02209
    [22] LIU T, MAN C Y, GUO X, ZHENG C G. Experimental study on the mechanism of mercury removal with Fe2O3 in the presence of halogens: role of HCl and HBr[J]. Fuel,2016,173:209−216. doi: 10.1016/j.fuel.2016.01.054
    [23] 陈佳敏, 周长松, 杨宏旻, 吴昊. Mo/Fe3O4(111) 表面对燃煤烟气汞吸附的密度泛函研究[J]. 燃料化学学报,2020,48(5):525−532. doi: 10.3969/j.issn.0253-2409.2020.05.002

    CHEN Jia-min, ZHOU Chang-song, YANG Hong-min, WU Hao. A DFT study on the adsorption of various mercury species in the coal combustion flue gases on the Mo-doped Fe3O4(111) surface[J]. J Fuel Chem Technol,2020,48(5):525−532. doi: 10.3969/j.issn.0253-2409.2020.05.002
    [24] WANG Z, LIU J, YANG Y, YANG Y J, SHEN F H, YU Y N, YAN X C. Elucidating the mechanism of Hg0 oxidation by chlorine species over Co3O4 catalyst at molecular level[J]. Appl Surf Sci,2020,513:145885.
    [25] ZHANG B K, LIU J, SHEN F H. Heterogeneous mercury oxidation by HCl over CeO2 catalyst: Density functional theory study[J]. J Phys Chem C,2015,119(27):15047−15055. doi: 10.1021/acs.jpcc.5b00645
    [26] JΦRGENSEN J E, MOSEGAARD L, THOMSEN L E, JENSEN T R, HANSON J C. Formation of γ-Fe2O3 nanoparticles and vacancy ordering: An in situ X-ray powder diffraction study[J]. J Solid State Chem,2007,180(1):180−185. doi: 10.1016/j.jssc.2006.09.033
    [27] BAETZOLD R C, YANG H. Computational study on surface structure and crystal morphology of γ-Fe2O3:  Toward deterministic synthesis of nanocrystals[J]. J Phys Chem B,2003,107(51):14357−14364. doi: 10.1021/jp035785k
    [28] REN D D, GUI K T. Study of the adsorption of NH3 and NOx on the nano-γFe2O3 (001) surface with density functional theory[J]. Appl Surf Sci,2019,487:171−179. doi: 10.1016/j.apsusc.2019.04.250
    [29] SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J Phys-Condens Matter,2002,14(11):2717. doi: 10.1088/0953-8984/14/11/301
    [30] HUBER K P, HERZBERG G. Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules[M]. New York: Springer Science & Business Media, 2013.
    [31] KAUPP M, VON SCHNERING H G. Origin of the unique stability of condensed-phase Hg22+. An ab initio investigation of MI and MII pecies (M =Zn, Cd, Hg)[J]. Inorg Chem,1994,33(18):4179−4185. doi: 10.1021/ic00096a049
    [32] GUO P, GUO X, ZHENG C G. Roles of γ-Fe2O3 in fly ash for mercury removal: Results of density functional theory study[J]. Appl Surf Sci,2010,256(23):6991−6996. doi: 10.1016/j.apsusc.2010.05.013
    [33] 厉志鹏, 牛胜利, 赵改菊, 韩奎华, 李英杰, 路春美, 程屾. Sr掺杂对 CaO (100) 表面吸附甲醇影响的分子模拟[J]. 燃料化学学报,2020,48(2):172−178. doi: 10.3969/j.issn.0253-2409.2020.02.006

    LI Zhi-peng, NIU Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHENG Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. J Fuel Chem Technol,2020,48(2):172−178. doi: 10.3969/j.issn.0253-2409.2020.02.006
    [34] PRESTO A A, GRANITE E J. Survey of catalysts for oxidation of mercury in flue gas[J]. Environ Sci Technol,2006,40(18):5601−5609. doi: 10.1021/es060504i
    [35] HE W, RAN J, NIU J Y, NIU J T, YANG G P, ZHANG P. Mechanism insights into elemental mercury oxidation on RuO2 (110) surface: A density functional study[J]. Appl Surf Sci,2019,466:920−927. doi: 10.1016/j.apsusc.2018.09.218
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  557
  • HTML全文浏览量:  81
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2021-04-28
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回