留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预硫化温度对煤直接液化催化剂组分转变及其催化性能的影响

陈晨 李海杰 白杨 冯富祥 田磊 杨勇 刘源 郭强

陈晨, 李海杰, 白杨, 冯富祥, 田磊, 杨勇, 刘源, 郭强. 预硫化温度对煤直接液化催化剂组分转变及其催化性能的影响[J]. 燃料化学学报(中英文), 2022, 50(1): 54-62. doi: 10.1016/S1872-5813(21)60118-4
引用本文: 陈晨, 李海杰, 白杨, 冯富祥, 田磊, 杨勇, 刘源, 郭强. 预硫化温度对煤直接液化催化剂组分转变及其催化性能的影响[J]. 燃料化学学报(中英文), 2022, 50(1): 54-62. doi: 10.1016/S1872-5813(21)60118-4
CHEN Chen, LI Hai-jie, BAI Yang, FENG Fu-xiang, TIAN Lei, YANG Yong, LIU Yuan, GUO Qiang. Effect of sulfidation temperature on component transformation and catalytic performance of direct coal liquefaction catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 54-62. doi: 10.1016/S1872-5813(21)60118-4
Citation: CHEN Chen, LI Hai-jie, BAI Yang, FENG Fu-xiang, TIAN Lei, YANG Yong, LIU Yuan, GUO Qiang. Effect of sulfidation temperature on component transformation and catalytic performance of direct coal liquefaction catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 54-62. doi: 10.1016/S1872-5813(21)60118-4

预硫化温度对煤直接液化催化剂组分转变及其催化性能的影响

doi: 10.1016/S1872-5813(21)60118-4
详细信息
    作者简介:

    陈晨:chen277@tju.edu.cn

    通讯作者:

    E-mail: yuanliu@tju.edu.cn

    guoqiang@synfuelschina.com.cn

  • 中图分类号: TQ536

Effect of sulfidation temperature on component transformation and catalytic performance of direct coal liquefaction catalyst

  • 摘要: 在5% H2S/N2气氛,不同预硫化温度下制备了系列硫铁催化剂,并在5 MPa 的1% H2S/H2气氛、360 ℃下研究了其催化萘的加氢活性。借助MES、XRD和XPS等表征手段,探究了催化剂在不同预硫化温度及反应条件下组分转变规律。结果表明,预硫化过程是硫由表面向内部,依照FeS2→FeS、Fe1−xS→Fe3S4→Fe2O3顺序渗硫的过程,而升高温度有利于硫向体相内的传递;接触1% H2S/H2气氛后晶粒由外向内各组分均快速转化为Fe1–xS的过程;调控预硫化条件可以实现活性组分Fe1–xS的含量高、晶粒小,于是可获得最高活性。
  • FIG. 1237.  FIG. 1237.

    FIG. 1237.  FIG. 1237.

    图  1  氧化物前驱体XRD谱图(a),TEM照片及其电子衍射谱图(b)以及SEM照片(c)

    Figure  1  XRD pattern (a), TEM image, electron diffraction pattern (b) and SEM image (c) of Pre (oxide precursor)

    图  2  氧化物前驱体(Pre)以及不同温度下(5% H2S/N2)预硫化1 h所得催化剂的XRD谱图

    Figure  2  XRD patterns of oxide precursor (Pre) and catalyst, obtained by sulfidation at different temperatures and 5% H2S/N2 for 1 h

    图  3  5% H2S/N2预硫化条件下Fe 2p(a)和S 2p(b)谱图

    Figure  3  Spectra of Fe 2p (a) and S 2p (b) under 5% H2S/N2 sulfidation condition

    图  4  不同预处理温度(5% H2S/N2)所得催化剂经过反应条件(1% H2S/H2)后XRD谱图

    Figure  4  XRD patterns of the catalysts prepared at different pretreatment temperature (5% H2S/N2) and reaction conditions (1% H2S/H2)

    图  5  预处理温度与萘转化率及催化剂粒径的关系

    Figure  5  Relationship between the pretreatment temperature and naphthalene transformation and catalyst particle size

    图  6  不同温度预硫化条件下的颗粒变化

    Figure  6  Changing the particles under different sulfidation temperature

    表  1  Mössbauer谱解谱参数及其来源

    Table  1  Parameters of Mössbauer spectrum and data sources

    NameSiteIS/
    (mm·s−1)
    QS/
    (mm·s−1)
    H(T)
    Hexagonal
    Pyrrhotite[21]
    1 0.74 0.01 33.01
    2 0.72 0.02 30.44
    3 0.71 0.02 28.18
    4 0.74 0.01 25.63
    Monoclinic
    Pyrrhotite[22]
    1 0.85(1) −0.035(4) 33.4(1)
    2 0.86(2) 0.084(10) 31.4(2)
    3 0.81(1) −0.086(10) 27.1(1)
    4a 0.83(1) 0.084(15) 24.4(2)
    4b 0.82(1) 0.166(15) 20.7(2)
    Greigite[23] octahedral 0.66 32.7
    tetrahedral 0.38 31.9
    Troilite[24] 0.89 −0.14 32.8
    Pyrite[25] 0.43(1) 0.66(1)
    Maghemite[26] x 0.47 −0.01 51.0
    y 0.34 −0.03 48.1
    Magnetite[26] A 0.42 0.06 51.6
    B 0.99 0.89 51.0
    Highly dispersed
    Fe[27]
    0.02 −0.03 25.0
    α-Fe[28] 0.09 0.04 33.8
    下载: 导出CSV

    表  2  不同预硫化温度(5% H2S/N2)所得催化剂的Mössbauer谱解析

    Table  2  Mössbauer spectrum results of catalysts obtained at different sulfidation temperature (5% H2S/N2)

    SampleFe3O4Fe2O3Fe3S4Fe1–xSFeSFeS2FeFe2+(spm)Fe3+(spm)
    Pre 20.3 79.7
    Cat-50 17.9 45.5 9.2 15.0 3.8 0 5.3 1.4 1.8
    Cat-100 10.8 44.7 7.9 22.1 0 9.3 5.3
    Cat-150 12.8 49.8 8.3 14.1 0.9 12.2 2.5
    Cat-200 6.2 29.9 10.5 28.2 3.0 21.4 0.9
    Cat-250 6.7 20.5 8.3 37.0 4.9 20.7 1.9
    Cat-300 6.2 20.1 12.8 33.2 4.5 23.2 0
    下载: 导出CSV

    表  3  不同预硫化温度(5% H2S/N2)硫化1 h后XPS所得Fe 2p和S 2p参数

    Table  3  Contents of Fe 2p and S 2p obtained by XPS after sulfidation at different temperatures at 5% H2S/N2 for 1 h

    SampleFeFe2+–SFe3+–SFe2+–OFe3+–OS2−$ {\rm{S}}^{2-}_2 $$ {\rm{S}}/{\rm{S}}^{2-}_{{{n}}} $
    Cat-504.429.29.712.344.475.624.4
    Cat-1005.048.420.67.019.061.330.87.9
    Cat-1503.352.618.415.610.153.941.15.0
    Cat-2006.548.423.17.314.758.236.85.0
    Cat-2508.739.919.516.015.861.130.88.1
    Cat-3007.643.021.710.617.162.228.39.5
    下载: 导出CSV

    表  4  不同预处理温度(5% H2S/N2)所得催化剂经过反应条件(1% H2S/H2)后Fe1−xS的晶粒尺寸及Fe1−xS中1−x

    Table  4  Particle size of Fe1–xS and the 1–x value of Fe1–xS for the catalysts prepared at different pretreatment temperature (5% H2S/N2) after reaction conditions (1% H2S/H2)

    SampleParticle size of Fe1–xS/nm1–x value of Fe1–xS
    Cat-50-36024.20.91
    Cat-100-36025.10.91
    Cat-150-36020.60.90
    Cat-200-36020.70.88
    Cat-250-36022.30.90
    Cat-300-36023.70.91
    下载: 导出CSV

    表  5  不同预处理温度(5% H2S/N2)所得催化剂经过反应条件(1% H2S/H2)后Mössbauer谱所得不同物质占比

    Table  5  Mössbauer spectra for the samples prepared at different pretreatment temperature (5% H2S/N2) and reaction conditions (1% H2S/H2)

    SampleFe3O4Fe2O3Fe3S4Fe1–xSFeSFeS2Fe
    Cat-50-3608.239.86.725.30.711.28.2
    Cat-100-36003.3064.120.66.25.8
    Cat-150-3601.60.83.261.819.35.67.8
    Cat-200-36000.41.970.515.54.96.9
    Cat-250-36000.5069.818.15.26.4
    Cat-300-3600.21.32.770.614.85.05.5
    下载: 导出CSV
  • [1] GUO M, XU Y. Coal-to-liquids projects in China under water and carbon constraints[J]. Energy Policy,2018,117:58−65. doi: 10.1016/j.enpol.2018.02.038
    [2] LIU Z, GUAN D B, WEI W, DAVIS S J, CIAIS P, BAI J, PENG S S, ZHANG Q, HUBACEK K, MARLAND G, ANDRES R J, CRAWFORD-BROWN D, LIN J T, ZHAO H Y, HONG C P, BODEN T A, FENG K S, PETERS G P, XI F M, LIU J G, LI Y, ZHAO Y, ZENG N, HE K B. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature,2015,524(7565):335−338. doi: 10.1038/nature14677
    [3] SHUI H, CAI Z, XU C. Recent advances in direct coal liquefaction[J]. Energies,2010,3(2):155−170. doi: 10.3390/en3020155
    [4] XIE J, LU H, SHU G, LI K, ZHANG X, WANG H, YUE W, GAO S, CHEN Y. The relationship between the microstructures and catalytic behaviors of iron-oxygen precursors during direct coal liquefaction[J]. Chin J Catal,2018,39(4):857−866. doi: 10.1016/S1872-2067(17)62919-X
    [5] HIRANO K, KOUZU M, OKADA T, KOBAYASHI M, IKENAGA N, SUZUKI T. Catalytic activity of iron compounds for coal liquefaction[J]. Fuel,1999,78(15):1867−1873. doi: 10.1016/S0016-2361(99)00095-2
    [6] IKENAGA N-O, UEDA C, MATSUI T, OHTSUKI M, SUZUKI T. Co-liquefaction of micro algae with coal using coal liquefaction catalysts[J]. Energy Fuels,2001,15(2):350−355. doi: 10.1021/ef000129u
    [7] MONTANO P A, VAISHNAVA P P, KING J A, EISENTROUT E N. Mössbäuer study of decomposition of pyrite in hydrogen[J]. Fuel,1981,60(8):712−716. doi: 10.1016/0016-2361(81)90224-6
    [8] IKENAGA N-O, TANIGUCHI H, WATANABE A, SUZUKI T. Sulfiding behavior of iron based coal liquefaction catalyst[J]. Fuel,2000,79(3):273−283.
    [9] HUFFMAN G P, GANGULY B, ZHAO J, RAO K R P M, SHAH N, FENG Z, HUGGINS F E, TAGHIEI M M, LU F. Structure and dispersion of iron-based catalysts for direct coal liquefaction[J]. Energy Fuels,1993,7(2):285−296. doi: 10.1021/ef00038a020
    [10] KANEKO T, TAZAWA K, KOYAMA T, SATOU K, SHIMASAKI K, KAGEYAMA Y. Transformation of iron catalyst to the active phase in coal liquefaction[J]. Energy Fuels,1998,12(5):897−904. doi: 10.1021/ef9702310
    [11] KANEKO T, SUGITA S, TAMURA M, SHIMASAKI K, MAKINO E, SILALAHI L H. Highly active limonite catalysts for direct coal liquefaction[J]. Fuel,2002,81(11/12):1541−1549. doi: 10.1016/S0016-2361(02)00079-0
    [12] 郭贵贵. 煤直接液化油加氢改质组合催化剂硫化过程分析[J]. 神华科技,2013,11(6):68−72. doi: 10.3969/j.issn.1674-8492.2013.06.022

    GUO Gui-gui. Analysis of catalyst vulcanization of coal direct liquefaction to oil hydrogenation modification combination[J]. Energy Sci Technol,2013,11(6):68−72. doi: 10.3969/j.issn.1674-8492.2013.06.022
    [13] 王仲义, 闫作杰, 单敏, 陈平平, 童健. 器外预硫化加氢裂化催化剂开工技术应用总结[J]. 炼油技术与工程,2021,51(1):10−12+32. doi: 10.3969/j.issn.1002-106X.2021.01.003

    WANG Zhong-yi, YAN Zuo-jie, SHAN Min, CHEN Ping-ping, TONG Jian. Application summary of start-up technology of ex-situ presulfiding hydrocracking catalyst[J]. Pet Refin Eng,2021,51(1):10−12+32. doi: 10.3969/j.issn.1002-106X.2021.01.003
    [14] 孙欣欣, 袁铭遥, 吴雪晴. 硫化铵器外预硫化选择性加氢催化剂研究[J]. 炼油技术与工程,2020,50(12):42−45. doi: 10.3969/j.issn.1002-106X.2020.12.012

    SUN Xin-xin, YUAN Ming-yao, WU Xue-qing. Study on ex-situ presulfurization of selective hydrogenation catalyst[J]. Pet Refin Eng,2020,50(12):42−45. doi: 10.3969/j.issn.1002-106X.2020.12.012
    [15] 陶帅江. 加氢催化剂预硫化技术进展[J]. 鞍钢技术,2020,(4):9−12. doi: 10.3969/j.issn.1006-4613.2020.04.002

    TAO Shuai-jiang. Progress in presulfurization technology for hydrotreating catalyst[J]. Angang Technol,2020,(4):9−12. doi: 10.3969/j.issn.1006-4613.2020.04.002
    [16] 张黎, 范文青, 肖文灿, 徐琳, 刘长坤. 加氢催化剂预硫化技术探讨[J]. 广东化工,2020,47(12):126−127. doi: 10.3969/j.issn.1007-1865.2020.12.053

    ZHANG Li, FAN Wen-qing, XIAO Wen-can, XU Lin, LIU Chang-kun. Study on the technology of pre-sulfurization for hydrogenated catalyst[J]. Guangdong Chem Ind,2020,47(12):126−127. doi: 10.3969/j.issn.1007-1865.2020.12.053
    [17] 金吉海, 刘丽芝, 宋君辉, 焦祖凯, 严金龙, 甄涛, 张铎. 器外预硫化催化剂加氢脱酸性能研究[J]. 无机盐工业,2020,52(9):100−104.

    JIN Ji-hai, LIU Li-zhi, SONG Jun-hui, JIAO Zu-kai, YAN Jin-long, ZHEN Tao, ZHANG Duo. Study on hydrodeacidification performance of off-site pre-sulfidation catalysts[J]. Inorg Chem Ind,2020,52(9):100−104.
    [18] DE WIND M, HEINERMAN J J L, LEE S L, PLANTENGA F L. Air quality and economics spur use of presulfided catalysts[J]. Oil Gas J,1992,90(8):49−53.
    [19] DJEGA-MARIADASSOU G, BESSON M, BRODZKI D, CHARCOSSET H, TRAN VINH H, VARLOUD J. Evolution of highly dispersed catalysts during hydroliquefaction of coal[J]. Fuel Process Technol,1986,12:143−153. doi: 10.1016/0378-3820(86)90072-X
    [20] LAMBERT J M, SIMKOVICH G, WALKER P L. Production of pyrrhotites by pyrite reduction[J]. Fuel,1980,59(10):687−690. doi: 10.1016/0016-2361(80)90019-8
    [21] KONDORO J W A. Mossbauer study of vacancies in natural pyrrhotite[J]. J Alloys Compd,1999,289(1/2):36−41. doi: 10.1016/S0925-8388(99)00170-X
    [22] JEANDEY C, ODDOU J L, MATTEI J L, FILLION G. Mössbauer investigation of the pyrrhotite at low temperature[J]. Solid State Commun,1991,78(3):195−198. doi: 10.1016/0038-1098(91)90282-Z
    [23] CHANG L, ROBERTS A P, TANG Y, RAINFORD B D, MUXWORTHY A R, CHEN Q W. Fundamental magnetic parameters from pure synthetic greigite (Fe3S4)[J]. J Geophys Res-Sol Ea,2008,113(B6):1−16.
    [24] CUDA J, KOHOUT T, TUCEK J, FILIP J, MALINA O, KRIZEK M, ZBORIL R. Mossbauer Spectroscopy in Materials Science[M]. New York: AIP Publishing, 2014: 8−11.
    [25] MONTANO P A, SEEHRA M S. Magnetism of iron pyrite (FeS2) - a Mossbauer study in an external magnetic-field[J]. Solid State Commun,1976,20(9):897−898. doi: 10.1016/0038-1098(76)91300-4
    [26] OH S J, COOK D C, TOWNSEND H E. Characterization of iron oxides commonly formed as corrosion products on steel[J]. Hyperfine Interact,1998,112(1/4):59−65.
    [27] KOBZI B, WATANABE Y, AKIYAMA K, KUZMANN E, HOMONNAY Z, KREHULA S, RISTIĆ M, NISHIDA T, KUBUKI S. 57Fe-Mössbauer study and methylene blue decomposing effect of nanoparticle mixtures composed of metallic iron and maghemite[J]. J Alloys Compd,2017,722:94−100. doi: 10.1016/j.jallcom.2017.06.083
    [28] KUBONO I, NISHIDA N, KOBAYASHI Y, YAMADA Y. Mossbauer spectra of iron (III) sulfide particles[J]. Hyperfine Interact,2017,238:1−10. doi: 10.1007/s10751-016-1375-5
    [29] ZHAO R, YANG L, SONG X, ZHANG W, WANG B, HUANG S, WU S, WU Y. Effects of sulfur additive on the transformation behaviors of γ-Fe2O3 and coal liquefaction performances under mild conditions[J]. Asia-Pac J Chem Eng,2018,13(4):1−9.
    [30] ZUO W B, PELENOVICH V, LI Q D, ZENG X M, FU D J. Study on velocity mode of Fe-57 Mossbauer spectroscopy and determination of lattice dynamics in Fe3S4[J]. Results Phys,2019,12:1214−1217. doi: 10.1016/j.rinp.2019.01.010
    [31] SKINNER B J, GRIMALDI F S, ERD R C. Greigite thio-spinel of iron-new mineral[J]. Am Mineral,1964,49(5/6):543−555.
    [32] SADEGH-VAZIRI R, BABLER M U. Removal of hydrogen sulfide with metal oxides in packed bed reactors-a review from a modeling perspective with practical implications[J]. Appl Sci-Basel,2019,9(24):1−24.
    [33] MORRISH R, SILVERSTEIN R, WOLDEN C A. Synthesis of stoichiometric FeS2 through plasma-assisted sulfurization of Fe2O3 nanorods[J]. J Am Chem Soc,2012,134(43):17854−17857. doi: 10.1021/ja307412e
    [34] YU L, LANY S, KYKYNESHI R, JIERATUM V, RAVICHANDRAN R, PELATT B, ALTSCHUL E, PLATT H A S, WAGER J F, KESZLER D A, ZUNGER A. Iron chalcogenide photovoltaic absorbers[J]. Adv Energy Mater,2011,1(5):748−753. doi: 10.1002/aenm.201100351
    [35] JAGADEESH M S, SEEHRA M S. Thermomagnetic studies of conversion of pyrite and marcasite in different atmospheres (vacuum, H2, He And CO)[J]. J Phys D Appl Phys,1981,14(11):2153−2167. doi: 10.1088/0022-3727/14/11/023
    [36] HONG Y, FEGLEY B. The kinetics and mechanism of pyrite thermal decomposition[J]. Ber Bunsen-Ges Phys,1997,101(12):1870−1881. doi: 10.1002/bbpc.19971011212
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  1028
  • HTML全文浏览量:  117
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 修回日期:  2021-06-02
  • 网络出版日期:  2021-07-09
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回