留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧温度对钼锡催化剂结构和二甲醚氧化性能的影响

熊盼 高秀娟 王文秀 张俊峰 宋法恩 张清德 韩怡卓 谭猗生

熊盼, 高秀娟, 王文秀, 张俊峰, 宋法恩, 张清德, 韩怡卓, 谭猗生. 焙烧温度对钼锡催化剂结构和二甲醚氧化性能的影响[J]. 燃料化学学报(中英文), 2022, 50(1): 63-71. doi: 10.1016/S1872-5813(21)60120-2
引用本文: 熊盼, 高秀娟, 王文秀, 张俊峰, 宋法恩, 张清德, 韩怡卓, 谭猗生. 焙烧温度对钼锡催化剂结构和二甲醚氧化性能的影响[J]. 燃料化学学报(中英文), 2022, 50(1): 63-71. doi: 10.1016/S1872-5813(21)60120-2
XIONG Pan, GAO Xiu-juan, WANG Wen-xiu, ZHANG Jun-feng, SONG Fa-en, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Effect of calcination temperature on the structure and performance of molybdenum-tin catalyst for DME oxidation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 63-71. doi: 10.1016/S1872-5813(21)60120-2
Citation: XIONG Pan, GAO Xiu-juan, WANG Wen-xiu, ZHANG Jun-feng, SONG Fa-en, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Effect of calcination temperature on the structure and performance of molybdenum-tin catalyst for DME oxidation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 63-71. doi: 10.1016/S1872-5813(21)60120-2

焙烧温度对钼锡催化剂结构和二甲醚氧化性能的影响

doi: 10.1016/S1872-5813(21)60120-2
基金项目: 国家自然科学基金(21773283,21373253),中国科学院创新交叉团队项目(BK2018001),中国科学院洁净能源创新研究院合作基金(DNL 201903),中国科学院青年创新促进会人才项目(2014155)和厦门大学固体表面物理化学国家重点实验室开放基金(201624)资助
详细信息
    通讯作者:

    Tel:0351-4044388, E-mail:qdzhang@sxicc.ac.cn

  • 中图分类号: 0643

Effect of calcination temperature on the structure and performance of molybdenum-tin catalyst for DME oxidation

Funds: The project was supported by the National Natural Science Foundation of China (21773283, 21373253), CAS Interdisciplinary Innovation Team (BK2018001), the Dalian National Laboratory For Clean Energy (DNL 201903) Cooperation Fund, CAS (DNL 201903), the Youth Innovation Promotion Association CAS (2014155) and the Open Project Program of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (201624)
  • 摘要: 采用水热法制备了Mo/Sn物质的量比为1∶2的Mo1Sn2催化剂,通过改变焙烧温度(400−700 ℃),调控了钼锡催化剂的结构,并研究了催化剂结构变化对二甲醚(DME)选择氧化制甲酸甲酯(MF)性能的影响。发现400 ℃焙烧的Mo1Sn2催化剂具有良好的催化氧化二甲醚生成甲酸甲酯的性能,在110 ℃、常压条件下,DME转化率为9.2%,MF选择性可达86.9%,并且无COx生成。采用XRD、Raman、XPS、TPD、H2-TPR和in-situ FT-IR等表征手段对催化剂的结构和表面性质进行了系统研究。结果表明,低温焙烧更利于钼锡催化剂表面形成更多的MoOx结构和Mo5+物种,由此引起的催化剂的酸性、氧化还原性的增强和中强碱性位的增多可明显促进催化剂活性的增强和甲酸甲酯的生成。
  • FIG. 1238.  FIG. 1238.

    FIG. 1238.  FIG. 1238.

    图  1  不同焙烧温度Mo1Sn2催化剂的XRD谱图

    Figure  1  XRD patterns of Mo1Sn2 catalysts calcined at different temperatures

    图  2  不同焙烧温度Mo1Sn2催化剂的Raman谱图

    Figure  2  Raman spectra of Mo1Sn2 catalysts calcined at different temperatures

    图  3  不同焙烧温度Mo1Sn2催化剂的FT-IR谱图

    Figure  3  FT-IR spectra of Mo1Sn2 catalysts calcined at different temperatures

    图  4  不同焙烧温度Mo1Sn2催化剂的N2吸附-脱附等温线(a)和介孔孔径分布(b)

    Figure  4  N2 adsorption-desorption isotherms (a) and mesoporous size distribution (b) of Mo1Sn2 catalysts

    图  5  不同焙烧温度Mo1Sn2催化剂的NH3-TPD(a)和CO2-TPD(b)谱图

    Figure  5  NH3-TPD(a) and CO2-TPD(b) profiles of Mo1Sn2 catalyst calcined at different temperatures

    图  6  不同焙烧温度Mo1Sn2催化剂的H2-TPR谱图

    Figure  6  H2-TPR profiles of Mo1Sn2 catalysts calcined at different temperatures

    图  7  不同焙烧温度Mo1Sn2催化剂的XPS-Sn 3d谱图

    Figure  7  Sn 3d XPS spectra of Mo1Sn2 catalysts calcined at different temperatures

    图  8  不同焙烧温度Mo1Sn2催化剂的XPS-Mo 3d谱图

    Figure  8  Mo 3d XPS spectra of Mo1Sn2 catalysts calcined at different temperatures

    图  9  不同焙烧温度Mo1Sn2催化剂上二甲醚催化剂反应原位红外光谱谱图

    (a): injected DME for 20 min on different catalysts at 110 ℃; (b): swept with Ar for 20 min on different catalysts at 110 ℃

    Figure  9  In-situ FT-IR spectra of DME oxidation over Mo1Sn2 catalysts calcined at different temperatures

    表  1  不同焙烧温度的Mo1Sn2催化剂对二甲醚选择氧化制备甲酸甲酯的影响

    Table  1  Effect of calcination temperatures on the selective oxidation of DME to MF over the Mo1Sn2 catalysts

    CatalystDME conversion
    x /%
    Cmol-selectivity s /%
    MFFACH3OHCODMM
    Mo1Sn2-4009.286.9013.100
    Mo1Sn2-5009.777.5022.500
    Mo1Sn2-60010.672.9027.100
    Mo1Sn2-7007.265.4034.600
    Reaction conditions: tR = 110 ℃, atmospheric pressure, DME/O2 = 1, GHSV = 1800 h−1
    下载: 导出CSV

    表  2  反应温度对Mo1Sn2-400催化剂上二甲醚氧化制备甲酸甲酯的影响

    Table  2  Effect of the reaction temperature on the oxidation of DME to MF over the Mo1Sn2-400 catalyst

    tR/℃DME conversion
    x/%
    Cmol-selectivity s/%
    MFFACH3OHCODMM
    905.589.8010.200
    1008.483.4016.600
    1109.286.9013.100
    12011.383.4014.52.10
    13011.582.4011.26.40
    14014.582.507.010.50
    Reaction conditions:atmospheric pressure, DME/O2 = 1, GHSV = 1800 h−1
    下载: 导出CSV

    表  3  不同焙烧温度Mo1Sn2催化剂的织构性质

    Table  3  Physical properties of Mo1Sn2 catalysts calcined at different temperatures

    CatalystBET surface area/
    (m2·g−1)
    Micropore area/
    (m2·g−1)
    External surface area/
    (m2·g−1)
    Pore volume/
    (cm3·g−1)
    Average pore
    diameter/nm
    Mo1Sn2-400163117460.092.3
    Mo1Sn2-50016790770.102.4
    Mo1Sn2-600152151370.102.7
    Mo1Sn2-700920920.114.8
    下载: 导出CSV

    表  4  不同焙烧温度Mo1Sn2催化剂XPS-Mo 3d 谱图分析

    Table  4  Mo 3d XPS spectra analysis of Mo1Sn2 catalysts calcined at different temperatures

    CatalystMo6+ 3d3/2Mo6+ 3d5/2Mo5+ 3d3/2Mo5+ 3d5/2Mo5+/%
    Mo1Sn2-400236.19233.05235.11232.0410.02
    Mo1Sn2-500236.15233.02235.10232.018.51
    Mo1Sn2-600236.10232.95235.11231.907.06
    Mo1Sn2-700236.11232.95235.10231.916.24
    下载: 导出CSV
  • [1] SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources,2006,156(2):497−511. doi: 10.1016/j.jpowsour.2005.05.082
    [2] SUN J, YANG G H, YONEYAMA Y, TSUBAKI N. Catalysis chemistry of dimethyl ether synthesis[J]. ACS Catal,2014,4(10):3346−3356. doi: 10.1021/cs500967j
    [3] TAN Y S, XIE H J, CUI H T, HAN Y Z, ZHONG B. Modification of Cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase[J]. Catal Today,2005,104(1):25−29. doi: 10.1016/j.cattod.2005.03.033
    [4] XU M T, LUNSFORD J H, GOODMAN D W, BHATTACHARYYA A. Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts[J]. Appl Catal A: Gen,1997,149(2):289−301. doi: 10.1016/S0926-860X(96)00275-X
    [5] 孙明, 余林, 孙长勇, 宋一兵, 孙建. 二甲醚的应用及下游产品开发[J]. 精细化工,2003,20(11):695−699. doi: 10.3321/j.issn:1003-5214.2003.11.017

    SUN Ming, YU Lin, SUN Chang-yong, SONG Yi-bing, SUN Jian. Application of dimethyl ether and development of its downstream products[J]. Fine Chem,2003,20(11):695−699. doi: 10.3321/j.issn:1003-5214.2003.11.017
    [6] 常雁红, 韩怡卓, 王心葵. 二甲醚的生产、应用及下游产品的开发[J]. 天然气化工,2000,25(3):45−49.

    CHANG Yan-hong, HAN Yi-zhuo, WANG Xin-kui. Production, application and development of downstream products of dimethyl ether[J]. Nat Gas Chem Ind,2000,25(3):45−49.
    [7] GAO X J, WANG W F, GU Y Y, ZHANG Z Z, ZHANG J F, ZHANG Q D, TSUBAKI N, HAN Y Z, TAN Y S. Synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation over carbon-based catalysts[J]. ChemCatChem,2018,10(1):273−279. doi: 10.1002/cctc.201701213
    [8] 周寿祖. 甲酸甲酯的生产技术和应用前景[J]. 化工科技市场,2003,26(2):13−18.

    ZHOU Shou-zu. Production technology and application foreground of methyl formate[J]. Chem Technol Market,2003,26(2):13−18.
    [9] 陈文龙, 刘海超. 甲醇脱氢和选择氧化制备甲酸甲酯的催化剂与反应路径[J]. 科学通报,2015,60(16):1502−1512. doi: 10.1360/N972014-01349

    CHEN Wen-long, LIU Hai-chao. Catalysts and reaction pathways for dehydrogenation and selective oxidation methanol to methyl formate[J]. Chin Sci Bull,2015,60(16):1502−1512. doi: 10.1360/N972014-01349
    [10] AI M. The production of methyl formate by the vapor-phase oxidation of methanol[J]. J Catal,1982,77(1):279−288. doi: 10.1016/0021-9517(82)90168-3
    [11] LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effects of the MoO3 structure of Mo-Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions[J]. Green Chem,2015,17(2):1057−1064. doi: 10.1039/C4GC01591F
    [12] LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3-SnO2 catalyst under mild conditions[J]. Green Chem,2013,15(6):1501−1504. doi: 10.1039/c3gc40279g
    [13] CHEUNG P, LIU H C, IGLESIA E. Kinetics and mechanism of dimethyl ether oxidation to formaldehyde on supported molybdenum oxide domains[J]. J Phys Chem B,2004,108(48):18650−18658. doi: 10.1021/jp0477405
    [14] LIU H C, CHEUNG P, IGLESIA E. Zirconia-supported MoOx, catalysts for the selective oxidation of dimethyl ether to formaldehyde: Structure, redox properties, and reaction pathways[J]. J Phys Chem B,2003,107(17):4118−4127. doi: 10.1021/jp0221744
    [15] LIU H C, CHEUNG P, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal,2003,217(1):222−232.
    [16] ZHANG Z Z, ZHANG Q D, JIA L Y, WANG W F, ZHANG T, HAN Y Z, TSUBAKI N, TAN Y S. Effects of tetrahedral molybdenum oxide species and MoOx domains on the selective oxidation of dimethyl ether under mild conditions[J]. Catal Sci Technol,2016,6(9):2975−2983. doi: 10.1039/C5CY01569C
    [17] ZHANG Z Z, ZHANG Q D, JIA L Y, WANG W F, TIAN S P, WANG P, XIAO H, HAN Y Z, TSUBAKI N, TAN Y S. The effects of the Mo-Sn contact interface on the oxidation reaction of dimethyl ether to methyl formate at a low reaction temperature[J]. Catal Sci Technol,2016,6(15):6109−6117. doi: 10.1039/C6CY00460A
    [18] 杨奇, 高秀娟, 冯茹, 李明杰, 张俊峰, 张清德, 韩怡卓, 谭猗生. 水热合成的MoO3-SnO2催化剂催化氧化二甲醚的性能研究[J]. 燃料化学学报,2019,47(8):934−941. doi: 10.3969/j.issn.0253-2409.2019.08.005

    (YANG Qi, GAO Xiu-juan, FENG Ru, LI Ming-jie, ZHANG Jun-feng, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. MoO3-SnO2 catalyst prepared by hydrothermal synthesis method for dimethyl ether catalytic oxidation[J]. J Fuel Chem Technol,2019,47(8):934−941. doi: 10.3969/j.issn.0253-2409.2019.08.005
    [19] LI A, LONG H, ZHANG H, LI H. High-yield synthesis of Ce modified Fe-Mn composite oxides benefitting from catalytic destruction of chlorobenzene[J]. Rsc Adv,2020,10(17):10030−10037. doi: 10.1039/C9RA10489E
    [20] TAO Z, YANG Y, DING M, LI T, XIANG H, LI Y. Effect of calcination behaviors on precipitated iron-manganese Fischer-Tropsch synthesis catalyst[J]. Catal Lett,2007,117(3/4):130−135. doi: 10.1007/s10562-007-9118-5
    [21] 张建荣, 高濂. 水热法合成纳米SnO2粉体[J]. 无机材料学报,2004,19(5):1177−1180. doi: 10.3321/j.issn:1000-324X.2004.05.034

    ZHANG Jian-rong, GAO Lian. Hydrothermal synthesis of tin oxide nanoparticles[J]. J Inorg Mater,2004,19(5):1177−1180. doi: 10.3321/j.issn:1000-324X.2004.05.034
    [22] LAKSHMI L J, ALYEA E C. ESR, FT-Raman spectroscopic and ethanol partial oxidation studies on MoO3/SnO2 catalysts made by metal oxide vapor synthesis[J]. Catal Lett,1999,59(1):73−77. doi: 10.1023/A:1019099900418
    [23] HERRMANN J M, VILLAIN F, APPEL L G. Characterization of Mo-Sn-O system by means of Raman spectroscopy and electrical conductivity measurements[J]. Appl Catal A: Gen,2003,240(1/2):177−182. doi: 10.1016/S0926-860X(02)00419-2
    [24] GONCALVES F, MEDEIROS P R S, EON J G, APPEL L G. Active sites for ethanol oxidation over SnO2-supported molybdenum oxides[J]. Appl Catal A: Gen,2000,193(1/2):195−202. doi: 10.1016/S0926-860X(99)00430-5
    [25] HABER J, LALIK E. Catalytic properties of MoO3 revisited[J]. Catal Today,1997,33(1/3):119−137. doi: 10.1016/S0920-5861(96)00107-1
    [26] Zhang Q D, TAN Y S, LIU G B, ZHANG J F, HAN Y Z. Rhenium oxide-modified H3PW12O40/TiO2 catalysts for selective oxidation of dimethyl ether to dimethoxy dimethyl ether[J]. Green Chem,2014,16(11):4708−4715. doi: 10.1039/C4GC01373E
    [27] 陶东平, 杨显万. 氧化亚锡歧化还原动力学和二氧化锡还原机理[J]. 中国有色金属学报,1998,8(1):126−130. doi: 10.3321/j.issn:1004-0609.1998.01.027

    TAO Dong-ping, YANG Xian-wan. Kinetics of disproportionation and reduction of stannous oxide and mechanism of reduction of stannic oxide[J]. Chin J Nonferrous Met,1998,8(1):126−130. doi: 10.3321/j.issn:1004-0609.1998.01.027
    [28] 杜英辉, 许国基. 氢气还原金属氧化物[J]. 原子能科学技术,1999,33(4):360−362. doi: 10.3969/j.issn.1000-6931.1999.04.020

    DU Ying-hui, XU Guo-ji. Hydrogen reduction of metal oxides to metals[J]. Atom Energy Sci Technol,1999,33(4):360−362. doi: 10.3969/j.issn.1000-6931.1999.04.020
    [29] TAN X J, WANG L Z, CHENG C, YAN X F, SHEN B, ZHANG J L. Plasmonic MoO3−x @MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement[J]. Chem Commun,2016,52(14):2893−2896. doi: 10.1039/C5CC10020H
    [30] SWIATOWSKA-MROWIECKA J, DE DIESBACH S, MAURICE V, ZANNA S, KLEIN L, BRIAND E, VICKRIDGE I, MARCUS P. Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA[J]. J Phys Chem C,2008,112(29):11050−11058. doi: 10.1021/jp800147f
    [31] 杨奇. 钼锡催化剂上二甲醚低温氧化机理研究[D]. 北京: 中国科学院大学, 2019.

    YANG Qi. Study on the mechanism of the low-temperature oxidation of dimethyl ether over MoO3-SnO2 catalyst[D]. Beijing: University of Chinese Academy of Sciences, 2019.
    [32] LOCHAR V. FT-IR study of methanol, formaldehyde and methyl formate adsorption on the surface of Mo/Sn oxide catalyst[J]. Appl Catal A: Gen,2006,309(1):33−36. doi: 10.1016/j.apcata.2006.04.030
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  209
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 修回日期:  2021-05-23
  • 网络出版日期:  2021-06-25
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回