留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚临界水中葡萄糖转化生成5-羟甲基糠醛的理论研究

阎智锋 连洁 赵舟 何春启 岳秀萍 王玉萍 吴杏 卢建军

阎智锋, 连洁, 赵舟, 何春启, 岳秀萍, 王玉萍, 吴杏, 卢建军. 亚临界水中葡萄糖转化生成5-羟甲基糠醛的理论研究[J]. 燃料化学学报(中英文), 2021, 49(8): 1122-1131. doi: 10.1016/S1872-5813(21)60124-X
引用本文: 阎智锋, 连洁, 赵舟, 何春启, 岳秀萍, 王玉萍, 吴杏, 卢建军. 亚临界水中葡萄糖转化生成5-羟甲基糠醛的理论研究[J]. 燃料化学学报(中英文), 2021, 49(8): 1122-1131. doi: 10.1016/S1872-5813(21)60124-X
YAN Zhi-feng, LIAN Jie, ZHAO Zhou, HE Chun-qi, YUE Xiu-ping, WANG Yu-ping, WU Xing, LU Jian-jun. Theoretical insight into the conversion of glucose to 5-hydroxymethylfurfural in subcritical water[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1122-1131. doi: 10.1016/S1872-5813(21)60124-X
Citation: YAN Zhi-feng, LIAN Jie, ZHAO Zhou, HE Chun-qi, YUE Xiu-ping, WANG Yu-ping, WU Xing, LU Jian-jun. Theoretical insight into the conversion of glucose to 5-hydroxymethylfurfural in subcritical water[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1122-1131. doi: 10.1016/S1872-5813(21)60124-X

亚临界水中葡萄糖转化生成5-羟甲基糠醛的理论研究

doi: 10.1016/S1872-5813(21)60124-X
基金项目: 国家自然科学基金(51703153),山西省重点研发计划(201903D121032),山西省面上青年基金(201801D221365)和山西省高等学校科技创新项目(2019L0311)资助
详细信息
    通讯作者:

    E-mail: yanzhifeng0234@163.com

  • 中图分类号: TQ353.2

Theoretical insight into the conversion of glucose to 5-hydroxymethylfurfural in subcritical water

Funds: The project was supported by National Natural Science Foundation of China (51703153),Key Research and Development Program of Shanxi Province (201903D121032),Shanxi Province Science Foundation for Youths (201801D221365) and Science and Technology Program in Higher Education Institutions of Shanxi Province (2019L0311)
  • 摘要: 采用色散修正的密度泛函理论,分别采用隐性溶剂模型和显性溶剂模型,对比研究了亚临界水中葡萄糖异构化为果糖以及果糖脱水制备5-羟甲基糠醛(5-HMF)的反应机理。结果表明,显性溶剂模型更接近真实反应情况,溶剂水分子能够参与反应并在质子迁移过程起催化作用。葡萄糖异构化反应的控速步骤为开环葡萄糖的醛-烯醇异构化,其活化能取决于开环葡萄糖中α−H提取的难易程度及生成的碳负离子的稳定性。果糖脱水反应控速步骤为呋喃果糖的第一次分子内脱水,所需活化能取决于呋喃果糖C(2)位OH质子化脱水后形成的碳正离子的稳定性。本工作揭示了Brønsted碱对葡萄糖异构化反应及Brønsted酸对果糖脱水反应促进作用的根本原因,为葡萄糖降解转化催化剂的调控及溶剂的筛选提供理论依据。
  • FIG. 838.  FIG. 838.

    FIG. 838.  FIG. 838.

    图  1  葡萄糖脱水制备5-HMF反应机理

    Figure  1  Reaction mechanism for dehydration of glucose to 5-HMF

    图  2  隐性溶剂模型中葡萄糖异构化为果糖反应路径

    Figure  2  Reaction pathways for the isomerization of glucose to fructose in the implicit solvent model

    图  3  隐性溶剂模型中葡萄糖异构化为果糖反应路径中反应物、中间体、过渡态和产物的优化构型(Å)

    Figure  3  Optimized configurations of reactant, intermediates, transition states and product along the isomerization of glucose to fructose in the implicit solvent model; the bond lengths are given in Å

    图  4  隐性溶剂模型中葡萄糖异构化为果糖反应势能

    Figure  4  Potential energy profile along the isomerization course of glucose to fructose in the implicit solvent model

    图  7  显性溶剂模型中葡萄糖异构化为果糖反应势能

    Figure  7  Potential energy profile along the isomerization course of glucose to fructose in the explicit solvent model

    图  5  显性溶剂模型中葡萄糖异构化为果糖反应路径

    Figure  5  Reaction pathways of the isomerization of glucose to fructose in the explicit solvent model

    图  6  显性溶剂模型中葡萄糖异构化为果糖反应路径中反应物、中间体、过渡态和产物的优化构型(Å)

    Figure  6  Optimized configurations of reactant, intermediates, transition states and product along the isomerization of glucose to fructose in the explicit solvent model; the bond lengths are given in Å

    图  8  隐性溶剂模型中果糖脱水制备5-HMF反应路径

    Figure  8  Reaction pathways for the dehydration of fructose to 5-HMF in the implicit solvent model

    图  9  隐性溶剂模型中果糖脱水制备5-HMF反应路径中反应物、中间体、过渡态和产物的优化构型(Å)

    Figure  9  Optimized configurations of reactant, intermediates, transition states and product for the dehydration of fructose to 5-HMF in the implicit solvent model; the bond lengths are given in Å

    图  10  隐性溶剂模型中果糖脱水制备5-HMF反应势能

    Figure  10  Potential energy profile along the dehydration mechanism of fructose to 5-HMF in implicit solvent model

    图  11  显性溶剂模型中果糖脱水制备5-HMF反应路径

    Figure  11  Reaction pathways for the dehydration of fructose to 5-HMF in the explicit solvent model

    图  12  显性溶剂模型中果糖脱水制备5-HMF反应路径中反应物、中间体、过渡态和产物的优化构型(Å)

    Figure  12  Optimized configurations of reactant, intermediates, transition states and product for the dehydration of fructose to 5-HMF in the explicit solvent model; the bond lengths are given in Å

    图  13  显性溶剂模型中果糖脱水制备5-HMF反应势能

    Figure  13  Potential energy profile along the dehydration mechanism of fructose to 5-HMF in explicit solvent model

  • [1] YAN Z, LIAN J, FENG Y, LI M, LONG F, CHENG R, SHI S, GUO H, LU J. A mechanistic insight into glucose conversion in subcritical water: Complex reaction network and the effects of acid-base catalysis[J]. Fuel,2021,289:119969. doi: 10.1016/j.fuel.2020.119969
    [2] 张强, 喻蓬秋, 李林, 乐治平. ZnCl2溶液中微波辅助SnCl4催化纤维素制备5-HMF[J]. 燃料化学学报,2017,45(3):317−322. doi: 10.3969/j.issn.0253-2409.2017.03.009

    ZHANG Qiang, YU Peng-qiu, LI Lin, LE Zhi-ping. Preparation of 5-HMF from cellulose catalyzed by SnCl4 under microwave in ZnCl2 solution[J]. J Fuel Chem Technol,2017,45(3):317−322. doi: 10.3969/j.issn.0253-2409.2017.03.009
    [3] 郑洪岩, 赵子龙, 肖鲁青山, 赵文诗, 梁栩彬, 薛彦峰, 杨红, 牛宇岚, 朱玉雷. 分子筛催化纤维素和淀粉转化制糠醛[J]. 燃料化学学报: 1−9[2021-06-14]. http://kns.cnki.net/kcms/detail/14.1140.TQ.20210422.2120.003.html.

    ZHENG Hong-yan, ZHAO Zi-long, XIAO Lu-qing-shan, ZHAO Wen-shi, LIANG Xu-bin, XUE Yan-feng, YANG Hong, NIU Yu-lan, ZHU Yu-lei. Catalytic conversion of cellulose and starch to furfural over zeolites[J]. J Fuel Chem Technol, 1−9[2021-06-14]. http://kns.cnki.net/kcms/detail/14.1140.TQ.20210422.2120.003.html.
    [4] VAN PUTTEN R-J, VAN DER WAAL J C, DE JONG E, RASRENDRA C B, HEERES H J, DE VRIES J G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chem Rev,2013,113(3):1499−1597. doi: 10.1021/cr300182k
    [5] PIDKO E A, DEGIRMENCI V, VAN SANTEN R A, HENSEN E J M. Glucose activation by transient Cr2+ Dimers[J]. Angew Chem Int Ed,2010,49(14):2530−2534. doi: 10.1002/anie.201000250
    [6] BINDER J B, CEFALI A V, BLANK J J, RAINES R T. Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural[J]. Energy Environ Sci,2010,3(6):765−771. doi: 10.1039/b923961h
    [7] LIU C, CARRAHER J M, SWEDBERG J L, HERNDON C R, FLEITMAN C N, TESSONNIER J P. Selective base-catalyzed isomerization of glucose to fructose[J]. ACS Catal,2014,4(12):4295−4298. doi: 10.1021/cs501197w
    [8] 张雄, 徐志祥, 李雪辉, 关建郁, 龙金星. 葡萄糖化学催化异构制备果糖研究进展[J]. 化工进展,2017,36(12):4575−4585.

    ZHANG Xiong, XU Zhi-xiang, LI Xue-hui, GUAN Jian-yu, LONG Jin-xing. Chemical isomerization of glucose into fructose[J]. Chem Ind Eng Prog,2017,36(12):4575−4585.
    [9] QI T, HE M-F, ZHU L-F, LYU Y-J, YANG H-Q, HU C-W. Cooperative catalytic performance of lewis and brønsted acids from AlCl3 salt in aqueous solution toward glucose-to-fructose isomerization[J]. J Phys Chem C,2019,123(8):4879−4891. doi: 10.1021/acs.jpcc.8b11773
    [10] 张颖诗, 王艳, 万金泉, 马邕文, 连洁. 基于固体酸的纤维素非均相催化糖化的研究进展[J]. 化工进展,2014,33(11):2947−2955.

    ZHANG Ying-shi, WANG Yan, WAN Jin-quan, MA Yong-wen, LIAN Jie. Heterogeneous saccharification of cellulose by solid acid[J]. Chem Ind Eng Prog,2014,33(11):2947−2955.
    [11] YABUSHITA M, SHIBAYAMA N, NAKAJIMA K, FUKUOKA A. Selective glucose-to-fructose isomerization in ethanol catalyzed by hydrotalcites[J]. ACS Catal,2019,9(3):2101−2109. doi: 10.1021/acscatal.8b05145
    [12] 唐伟强, 谢鹏, 徐小飞, 赵双良. 反应密度泛函理论的构建与初步应用[J]. 化工学报,2021,72(2):633−652.

    TANG Wei-qiang, XIE Peng, XU Xiao-fei, ZHAO Shuang-liang. Development and applications of reaction density functional theory[J]. CIESC J,2021,72(2):633−652.
    [13] 周婷婷, 刘霞, 叶子航, 周奕鹏, 杨雅淇, 徐清. 三聚氯氰催化及溶剂效应实现温和高效的酮肟贝克曼重排反应[J]. 有机化学,2020,40:1−11. doi: 10.6023/cjoc201907028

    ZHOU Ting-ting, LIU Xia, YE Zi-hang, ZHOU Yi-peng, YANG Ya-qia, XU Qing. Cyanuric chloride catalysis and solvent effect leading to a mild and efficient Beckmann rearrangement of ketoximes[J]. Chin J Org Chem,2020,40:1−11. doi: 10.6023/cjoc201907028
    [14] 宋英健, 崔晓静, 邓天昇, 秦张峰, 樊卫斌. 液相体系Ru-Co3O4催化CO2加氢制甲烷过程中的溶剂效应研究[J]. 燃料化学学报,2021,49(2):178−185. doi: 10.1016/S1872-5813(21)60013-0

    SONG Ying-jian, CUI Xiao-jing, DENG Tian-sheng, QIN Zhang-feng, FAN Wei-bin. Solvent effect on the activity of Ru-Co3O4 catalyst for liquid-phase hydrogenation of CO2 into methane[J]. J Fuel Chem Technol,2021,49(2):178−185. doi: 10.1016/S1872-5813(21)60013-0
    [15] SHIGEMOTO I, KAWAKAMI T, TAIKO H, OKUMURA M. A quantum chemical study on the thermal degradation reaction of polyesters[J]. Polym Degrad Stab,2012,97(6):941−947. doi: 10.1016/j.polymdegradstab.2012.03.020
    [16] CARTA D, CAO G, D’ANGELI C. Chemical recycling of poly(ethylene terephthalate) (pet) by hydrolysis and glycolysis[J]. Environ Sci Pollut Res,2003,10(6):390−394. doi: 10.1065/espr2001.12.104.8
    [17] MCMAHON W, BIRDSALL H A, JOHNSON G R, CAMILLI C T. Degradation studies of polyethylene terephthalate[J]. J Chem Eng Data,1959,4(1):57−79. doi: 10.1021/je60001a009
    [18] PICKETT J E, COYLE D J. Hydrolysis kinetics of condensation polymers under humidity aging conditions[J]. Polym Degrad Stab,2013,98(7):1311−1320. doi: 10.1016/j.polymdegradstab.2013.04.001
    [19] DUBELLEY F, PLANES E, BAS C, PONS E, YRIEIX B, FLANDIN L. Predictive durability of polyethylene terephthalate toward hydrolysis over large temperature and relative humidity ranges[J]. Polymer,2018,142:285−292. doi: 10.1016/j.polymer.2018.03.043
    [20] RAVENS D A S, WARD I M. Chemical reactivity of polyethylene terephthalate. Hydrolysis and esterification reactions in the solid phase[J]. Trans Faraday Soc,1961,57(0):150−159.
    [21] YOSHIOKA T, OKAYAMA N, OKUWAKI A. Kinetics of hydrolysis of PET powder in nitric acid by a modified shrinking-core model[J]. Ind Eng Chem Res,1998,37(2):336−340. doi: 10.1021/ie970459a
    [22] YAN Z, LIAN J, LI M, MENG L, ZHANG Y, GE C, LU J. Deeper insight into hydrolysis mechanisms of polyester/cotton blended fabrics for separation by explicit solvent models[J]. Int J Biol Macromol,2020,154:596−605. doi: 10.1016/j.ijbiomac.2020.03.130
    [23] WANG L-P, MARTINEZ T J, PANDE V S. Building force fields: An automatic, systematic, and reproducible approach[J]. J Phys Chem Lett,2014,5(11):1885−1891. doi: 10.1021/jz500737m
    [24] CHEN J, BROOKS C L, KHANDOGIN J. Recent advances in implicit solvent-based methods for biomolecular simulations[J]. Curr Opin Struc Biol,2008,18(2):140−148. doi: 10.1016/j.sbi.2008.01.003
    [25] BR LL D, KAUL C, KR MER A, KRAMMER P, RICHTER T, JUNG M, VOGEL H, ZEHNER P. Chemistry in supercritical water[J]. Angew Chem Int Ed,1999,38(20):2998−3014. doi: 10.1002/(SICI)1521-3773(19991018)38:20<2998::AID-ANIE2998>3.0.CO;2-L
    [26] ZHAO Y, LU W-J, WANG H-T, LI D. Combined supercritical and subcritical process for cellulose hydrolysis to fermentable hexoses[J]. Environ Sci Technol,2009,43(5):1565−1570. doi: 10.1021/es803122f
    [27] 赵岩, 李冬, 陆文静, 王洪涛, 朴雪松. 纤维素超临界水预处理与水解研究[J]. 化学学报,2008,66(20):2295−2301. doi: 10.3321/j.issn:0567-7351.2008.20.018

    ZHAO Yan, LI Dong, LU Wen-jing, WANG Hong-tao, PIAO Xue-song. Supercritical pretreatment and hydrolyzation of cellulose[J]. Acta Chim Sin,2008,66(20):2295−2301. doi: 10.3321/j.issn:0567-7351.2008.20.018
    [28] PROMDEJ C, MATSUMURA Y. Temperature effect on hydrothermal decomposition of glucose in sub- and supercritical water[J]. Ind Eng Chem Res,2011,50(14):8492−8497. doi: 10.1021/ie200298c
    [29] SASAKI M, FANG Z, FUKUSHIMA Y, ADSCHIRI T, ARAI K. Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J]. Ind Eng Chem Res,2000,39(8):2883−2890. doi: 10.1021/ie990690j
    [30] YU Y, LOU X, WU H. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods[J]. Energy Fuels,2008,22(1):46−60. doi: 10.1021/ef700292p
    [31] KRUSE A, DINJUS E. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions[J]. J Supercrit Fluids,2007,39(3):362−380. doi: 10.1016/j.supflu.2006.03.016
    [32] GRIMME S, ANTONY J, EHRLICH S, KRIEG H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys,2010,132(15):154104−154119. doi: 10.1063/1.3382344
    [33] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys,1990,92(1):508−517. doi: 10.1063/1.458452
    [34] DELLEY B. Fast calculation of electrostatics in crystals and large molecules[J]. J Phys Chem,1996,100(15):6107−6110. doi: 10.1021/jp952713n
    [35] PEVERATI R, BALDRIDGE K K. Implementation and optimization of DFT-D/COSab with respect to basis set and functional: Application to polar processes of furfural derivatives in solution[J]. J Chem Theory Comput,2009,5(10):2772−2786. doi: 10.1021/ct900363n
    [36] SIROHIWAL A, NEESE F, PANTAZIS D A. Microsolvation of the redox-active Tyrosine-D in photosystem II: correlation of energetics with EPR spectroscopy and oxidation-induced proton transfer[J]. J Am Chem Soc,2019,141(7):3217−3231. doi: 10.1021/jacs.8b13123
    [37] AKIYA N, SAVAGE P E. Roles of water for chemical reactions in high-temperature water[J]. Chem Rev,2002,102(8):2725−2750. doi: 10.1021/cr000668w
    [38] HALGREN T A, LIPSCOMB W N. The synchronous-transit method for determining reaction pathways and locating molecular transition states[J]. Chem Phys Lett,1977,49(2):225−232. doi: 10.1016/0009-2614(77)80574-5
    [39] PENG C, BERNHARD SCHLEGEL H. Combining synchronous transit and quasi-newton methods to find transition states[J]. Isr J Chem,1993,33(4):449−454. doi: 10.1002/ijch.199300051
    [40] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3865−3868. doi: 10.1103/PhysRevLett.77.3865
  • 加载中
图(14)
计量
  • 文章访问数:  853
  • HTML全文浏览量:  444
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 修回日期:  2021-06-14
  • 网络出版日期:  2021-06-23
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回