留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Isomerization and hydroformylation of butenes under the catalysis of Rh-BIPHEPHOS

JIANG Wei-li HE Li-mei HUANG Bin CHEN Ya-qi ZHOU Guang-lin ZHOU Hong-jun

姜伟丽, 何利梅, 黄斌, 陈雅琪, 周广林, 周红军. Rh-BIPHEPHOS催化剂作用下的丁烯异构与氢甲酰化反应[J]. 燃料化学学报(中英文), 2021, 49(8): 1173-1180. doi: 10.1016/S1872-5813(21)60126-3
引用本文: 姜伟丽, 何利梅, 黄斌, 陈雅琪, 周广林, 周红军. Rh-BIPHEPHOS催化剂作用下的丁烯异构与氢甲酰化反应[J]. 燃料化学学报(中英文), 2021, 49(8): 1173-1180. doi: 10.1016/S1872-5813(21)60126-3
JIANG Wei-li, HE Li-mei, HUANG Bin, CHEN Ya-qi, ZHOU Guang-lin, ZHOU Hong-jun. Isomerization and hydroformylation of butenes under the catalysis of Rh-BIPHEPHOS[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1173-1180. doi: 10.1016/S1872-5813(21)60126-3
Citation: JIANG Wei-li, HE Li-mei, HUANG Bin, CHEN Ya-qi, ZHOU Guang-lin, ZHOU Hong-jun. Isomerization and hydroformylation of butenes under the catalysis of Rh-BIPHEPHOS[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1173-1180. doi: 10.1016/S1872-5813(21)60126-3

Rh-BIPHEPHOS催化剂作用下的丁烯异构与氢甲酰化反应

doi: 10.1016/S1872-5813(21)60126-3
详细信息
  • 中图分类号: TQ215

Isomerization and hydroformylation of butenes under the catalysis of Rh-BIPHEPHOS

Funds: The project was supported by the Scientific Research and Technological Development Project of CNPC (LH-17-08-53-02) and the Strategic Cooperation Technology Projects of CNPC and CUPB (ZLZX2020-04).
More Information
  • 摘要: 为了深入研究丁烯氢甲酰化反应中可能发生的异构化与氢甲酰化反应,在Rh-BIPHEPHOS的催化作用下,对比研究了不同丁烯原料在不同温度下与合成气的反应。结果表明,1-丁烯与合成气反应时,异构化产物(2-丁烯)比氢甲酰化产物多,而以2-丁烯作为原料时,氢甲酰化反应占优势;受到1-丁烯和2-丁烯之间反应平衡的限制,温度对异构化反应有较大的正向影响。此外,在Rh-BIPHEPHOS的催化作用下,因为BIPHEPHOS较大的咬合角限制了异戊醛形成过程中的中间重排,所以产物中正戊醛的量要比异戊醛多。
  • FIG. 843.  FIG. 843.

    FIG. 843. 

    Figure  1  Mechanism of hydroformylation and isomerization of 1-butene and 2-butene

    Figure  2  1-butene conversion for the hydroformylation with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  3  2-butene yield for the hydroformylation of 1-butene with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  4  n-pentanal yield for the hydroformylation of 1-butene with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  5  i-pentanal yield for the hydroformylation of 1-butene with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  6  Ratio of 1-butene/2-butene in the products for the hydroformylation of 1-butene with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  7  2-butene conversion for the hydroformylation with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  8  1-butene yields for the hydroformylation of 2-butene with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  9  Ratio of 1-butene/2-butene in the product for the hydroformylation of 2-butene with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  10  n-pentanal yield for the hydroformylation of 2-butene with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  11  i-pentanal yield for the hydroformylation of 2-butene with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  12  1-butene conversion for the hydroformylation of mixed-butenes (n1-butene/n1-butene = 1/4) with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  13  2-butene conversion for the hydroformylation of mixed-butenes (n1-butene/n1-butene = 1/4) with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  14  n-pentanal yield for the hydroformylation of mixed-butenes (n1-butene/n1-butene = 1/4) with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  15  i-pentanal yield for the hydroformylation of mixed-butenes (n1-butene/n1-butene = 1/4) with syngas under Rh-BIPHEPHOS at different temperatures

    Figure  16  1-butene/2-butene ratio in the reaction mixture for the hydroformylation of mixed-butenes (n1-butene/n1-butene = 1/4) with syngas under Rh-BIPHEPHOS at different temperatures

  • [1] ZHANG Y, TORKER S, SIGNST M, BREGOVIC N, BINUCLEAR P D. Pd(I)-Pd(I) catalysis assisted by iodide ligands for selective hydroformylation of alkenes and alkynes[J]. J Am Chem Soc,2020,142(42):18251−18265. doi: 10.1021/jacs.0c09254
    [2] PEDERSEN S K, GUDMUNDSSON H G, NIELLSEN D U, DONSLUND B S, HAMMERSHOJ H C D, DAASBJERG K, SKRYDSTRUP T. Main element chemistry enables gas-cylinder-free hydroformylations[J]. Nat Catal,2020,3(10):1−8.
    [3] HUANG N, LIU B, LAN X, WANG T. Insights into the bimetallic effects of a RhCo catalyst for ethene hydroformylation: experimental and DFT investigations[J]. Ind Eng Chem Res,2020,59(42):18771−18780. doi: 10.1021/acs.iecr.0c03437
    [4] DANGAT Y, POPLI S, SUNOJ R B. Unraveling the importance of noncovalent interactions in asymmetric hydroformylation reactions[J]. J Am Chem Soc,2020,142(40):17079−17092.
    [5] JIANG W, CHEN Y, GAO L, SUN M, WANG X, LI Z, JI X ZHOU G, ZHOU H. Hydroformylation for reducing the olefin content in the FCC light gasoline with magnetic rhodium-catalysts[J]. Fuel,2020,279:118508−118514. doi: 10.1016/j.fuel.2020.118508
    [6] NETO D H C, DOS S A A M, SILVA D, JULIO C S, ROCHA W R, DIAS R P. Propene hydroformylation reaction catalyzed by HRh(CO)(BISBI): A Thermodynamic and kinetic analysis of the full catalytic cycle[J]. Eur J Inorg Chem,2020,(41):3907−3916.
    [7] RAGHUVANSHI K, ZHU C, RAMEZANI M, MENEGATTI S, SANTISO E E, MASON D, RODGERS J, JANKA M E, ABOLHASANI M. Highly efficient 1-octene hydroformylation at low syngas pressure: From single-droplet screening to continuous flow synthesis[J]. ACS Catal,2020,14(10):7535−7542.
    [8] ROBERT F, DETLEF S, AMMIN Borner. Applied hydroformylation (Review)[J]. Chem Rev,2012,112(11):5675−5732. doi: 10.1021/cr3001803
    [9] SLAUGH L H, MULLINEAUX RD. Novel hydroformylation catalysts[J]. J Organomet Chem,1968,13(2):469−477. doi: 10.1016/S0022-328X(00)82775-8
    [10] AGUADO-ULLATE S, BAKER J A, GONZALEZ-GONZALEZ V, MULLER C, HIRST J D, CARBO J J. A theoretical study of the activity in Rh-catalysed hydroformylation: the origin of the enhanced activity of the pi-acceptor phosphinine ligand[J]. Catal Sci Technol,2014,4(4):979−987. doi: 10.1039/C3CY00956D
    [11] KUMAR M, CHAUDHARI R V, SUBRAMMANIAM B, JACKSON T A. Ligand effects on the regioselectivity of rhodium-catalyzed hydroformylation: Density functional calculations illuminate the role of long-range noncovalent interactions[J]. Org,2014,33(16):4183−4191.
    [12] WANG Z, YANG Y. Rh-catalyzed highly regioselective hydroformylation to linear aldehydes by employing porous organic polymer as a ligand[J]. RSC Adv,2020,10(49):29263−29267.
    [13] MALINOWSKI J, ZYCH D, JACEWICZ D, GAWDZIK B, DRZEZDZON J. Application of coordination compounds with transition metal ions in the chemical industry--a review[J]. Int J Mol Sci,2020,21(15):5443−5468.
    [14] JIANG W, CHU J, YANG J, ZANG P, GAO L, ZHOU G, ZHOU H, WEI H. The influence of different monodentate P-ligands mixtures on Rh-catalyzed 1-butene hydroformylation Chinese[J]. J Chem Eng,2018,(26):1943−1948.
    [15] WANG Y, YAN L, LI C, JIANG M, ZHAO Z, HOU G, DING Y. Heterogeneous Rh/CPOL-BP& P(OPh)3 catalysts for hydroformylation of 1-butene: The formation and evolution of the active species[J]. J Catal,2018,368:197−206. doi: 10.1016/j.jcat.2018.10.012
    [16] WANG W, WANG D, YANG Q, AN H, ZHAO X, WANG Y. Silica-immobilized acid ionic liquid: An efficient catalyst for pentanal self-condensation[J]. J Chem Technol Biot,2020,95(11):2964−2972. doi: 10.1002/jctb.6457
    [17] WANG Y, YAN L, LI C, JIANG M. Highly efficient porous organic copolymer supported Rh catalysts for heterogeneous hydroformylation of butenes[J]. Appl Catal A: Gen,2018,551(5):98−105. doi: 10.1016/j.apcata.2017.12.013
    [18] LI X, ZHANG K, QIN L, MA H. Kinetic studies of hydroformylation of 1-butene using homogeneous Rh/PPh3 complex catalyst[J]. Mol Catal,2017,443:270−279.
    [19] WU L, FLEISCHER I, JACKSTELL R, PROFIR I, FRANKE R, BELLER M. Ruthenium-catalyzed hydroformylation/reduction of olefins to alcohols: Extending the scope to internal alkenes[J]. J Am Chem Soc,2013,135(38):14306−14312. doi: 10.1021/ja4060977
    [20] ZHANG Z, CHEN C, WANG Q, HAN Z, DONG X, ZHANG X. New tetraphosphite ligands for regioselective linear hydroformylation of terminal and internal olefins[J]. RSC Adv,2016,6(18):14559−14562. doi: 10.1039/C5RA23683E
    [21] HOOD D, JOHNSON R, CARPENTER A, YOUNKER J, VINYARD D, STANLEY G. Highly active cationic cobalt(II) hydroformylation catalysts[J]. Sci,2020,367(6477):542−548. doi: 10.1126/science.aaw7742
    [22] ZHANG L, LI C, FU H, YUAN M, LI R, CHEN H. Synthesis of a new biphophorus ligand and its application in hydroformylation of 2-butene[J]. Chin J Catal,2011,32(2):299−302.
    [23] VILCHES-HERRERA M, DOMKE L, BOEMER A. Isomerization-hydroformylation tandem reactions[J]. ACS Catal,2014,6(4):1706−1724.
    [24] GAIDE T, JOERKE A, SCHLIPKOETER K Er, HAMEL C, SEIDEL-MORGENSTEM A, BEHR A, VORHOLT A. Isomerization/hydroformylation tandem reaction of a decene isomeric mixture with subsequent catalyst recycling in thermomorphic solvent systems[J]. Appl Catal A: Gen,2017,532(25):50−56. doi: 10.1016/j.apcata.2016.12.011
    [25] JOERKE A, GAIDE T, BEHR A, VORHOLT, SEIDEL-NORGENSTEM A, HAMEL C. Hydroformylation and tandem isomerization-hydroformylation of n-decenes using a rhodium-BiPhePhos catalyst: Kinetic modeling, reaction network analysis and optimal reaction control[J]. Chem Eng J,2017,313(1):382−397. doi: 10.1016/j.cej.2016.12.070
    [26] TAY D W P, NOBBS J D, ROMAIN C, WHITE A J P, AITIPAMULA S, VANMURS M, BRITOVSEK G J P. Gem-dialkyl effect in diphosphine ligands: Synthesis, coordination behavior, and application in pd-catalyzed hydroformylation[J]. ACS Catal,2020,1(10):663−671.
    [27] GAMEDE N V, KAPFUNDE T A, OCANSEY E, NGUMBU D M, DARKWA J, MAKHUBELA B C E. N’N’N pincer and N’N bidentate(pyrazolylpyridyl) Rh(I) complexes as catalyst precursors for hydroformylation of olefins[J]. Transit Metal Chem,2020,(45):1−8.
    [28] LU L, FUENTES J A, JANKA M E, FONTENOT K J, CLARKE M L. High iso aldehyde selectivity in the hydroformylation of short-chain alkenes[J]. Angew Chem Int Ed,2019,58(7):2120−2124.
    [29] DEVON T J, PHOLLIPS G W, PUCKETTE T A, STAVINOHA J L, VANDERBILT J J. Chelate ligands for low pressure hydroformylation catalyst and process employing same: Eastman Kodak Company, US, 4694109 A[P]. 1989-07-25.
    [30] HERRMANN W A, SCHMID R, KOHLPAINTNER C W, PRIERMEIER T. Structure and metal coordination of the diphosphine 2, 2'-bis((diphenylphosphino)methyl)-1, 1'-binaphthyl (NAPHOS)[J]. Org,1995,14(4):1961−1968.
    [31] CASEY C P, WHITEKER G T, MELVILLE M G, PEROVICH L M, GAVNEY J A, POWELL D R. Diphosphines with natural bite angles near 120-degrees increase selectivity for normal-aldehyde formation in rhodium-catalyzed hydroformylation[J]. J Am Chem Soc,1992,114(14):5535−5543.
    [32] LEEUWEN P W N M, KAMER P C J, REEK J N H, DIERKES P. Ligand bite angle effects in metal-catalyzed C−C Bond Formation[J]. Chem Rev,2020,100(8):2741−2770.
    [33] VANDERVEEN L A, KEEVEN P H, SCHOEMAKKER G C, REEK J N H, KAMER P C J, VANLEEUWEN P W N M, LUTZ M, SPEK A L. Origin of the bite angle effect on rhodium diphosphine catalyzed hydroformylation[J]. Org,2000,19(5):872−883.
    [34] VILCHES-HERRERA M, CONCHA-PUELLES M, CARVAJAL N, MOLINA J, SANTANDER R, CAROLI REZENDE M, LUHR S. Influence of the bite natural angle of bidentate diphosphine ligands in the syngas-free branched hydroformylation of beta-functionalized olefins[J]. Catal Commun,2018,116(13):62−66.
    [35] HASTINGS S D, CAGLE E C, TOTSCH T R, TYUS S D, GRAY G M. Comparative study of novel phosphordiamidite and phosphite ligands used in alkene hydroformylation; synthesis, characterization, metalation, and catalytic evaluation[J]. Eur J Inorg Chem,2018,2018(37):4158−4174.
    [36] VOGL C, PAETZOLD E, FISCHER C, KRAGL U, MOL J. Highly selective hydroformylation of internal and terminal olefins to terminal aldehydes using a rhodium-BIPHEPHOS-catalyst system[J]. J Mol Catal A: Chem,2005,232(1/2):41−44.
    [37] BEHR A, OBST D, SCHULTE C, SCHOSSER T. Highly selective tandem isomerization-hydroformylation reaction of trans-4-octene to n-nonanal with rhodium-BIPHEPHOS catalysis[J]. J Mol Catal A: Chem,2003,206(1/2):179−184. doi: 10.1016/S1381-1169(03)00461-8
    [38] JORKE A, SEIDEL-MORGENSTERN A, HAMEL C. Rhodium-BiPhePhos catalyzed hydroformylation studied by operando FTIR spectroscopy: Catalyst activation and rate determining step[J]. J Mol Catal A: Chem,2017,426:10−14.
    [39] CHADA J P, XU Z, ZHAO D, WATSON R B, BRAMMER M, BIGI M, ROSENFELD D C, HERMANS I, HUBER G W. Oligomerization of 1-butene over carbon-supported CoOx and subsequent isomerization/hydroformylation to n-nonanal[J]. Catal Commun,2018,114:93−97.
    [40] LOGEMANN M, MARINKOVIC J M, SCHOERNER M, GARCIA-SUAREZ E J, HECHT C, FRANKE R, WESSLING M, RIISAGER A, FEHRMANN R, HAUMANN M. Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis[J]. Green Chem,2020,22(17):5691−5700. doi: 10.1039/D0GC01483D
    [41] WANG S, ZHANG J, PENG F, TANG Z, SUN Y. Enhanced hydroformylation in a continuous flow microreactor system[J]. Ind Eng Chem Res,2020,59(1):88−98. doi: 10.1021/acs.iecr.9b05350
    [42] HAUMANN M, JAKUTTIS M, FRANKE R, SCHOENWEIZ A, WASSERSCHEID P. Continuous gas-phase hydroformylation of a highly diluted technical C4 feed using supported ionic liquid phase catalysts[J]. ChemCatChem,2011,3(11):1822−1827. doi: 10.1002/cctc.201100117
    [43] EVANS D, OSBORN J A, WILKINSON G. Hydroformylation of alkenes by use of rhodium complex catalysts[J]. J Chem Soc A,1968,3133−3142.
    [44] LEEUWEN P W M V, CHADWICK J C. Homogeneous Catalysts: Activity–Stability–Deactivation[M]. Weinheim: Wiley-VCH Verlag & Co. KGaA, 2011, 213−278.
  • 加载中
图(17)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  92
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 修回日期:  2021-03-02
  • 网络出版日期:  2021-06-29
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回